Skip to main content

Areas of Research

  • Chapter
  • First Online:
Laboratory Science with Space Data

Abstract

This chapter introduces the main topics of research that have benefited so far from the space environment (reduced gravity, ambient radiation, vacuum, etc.), and provides an outlook for future research development. By convention, it is split into two fields: physical sciences/engineering and life sciences.

Physical science and engineering studies can be further divided into subfields; however, they quite often overlap (e.g. fluids). They range from very fundamental studies such as tests of special and general relativity, to the variety of fluid disciplines such as combustion and materials sciences, which are more application related. The space environment itself is also investigated.

Life sciences address the impact of microgravity and radiation on single cells, plants, animals and finally humans. There is a discussion of how life is affected by the space environment, and how we can make use of this environment to learn about some basic processes in life and how it might have developed on Earth. Leaving Earth for long-duration missions to Mars, for example, requires a sound understanding of how to deal with such a very demanding mission both with respect to crew survival and operations as well as to the technology to support human life on such missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://astrobiology.arc.nasa.gov/roadmap/.

References

  1. Aceto, J., Muller, M., Nourizadeh-Lillabadi, R., et al.: Small fish species as powerful model systems to study vertebrate physiology in space. J. Gravit. Physiol. 15, P111–P112 (2008)

    Google Scholar 

  2. Albrecht-Buehler, G.: Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull. 4, 25–34 (1991)

    Google Scholar 

  3. ASGSB: Slideset. http://asgsb.org/slidesets/slidesets.html(2010)

  4. Babbick, M., Dijkstra, C., Larkin, O.J., et al.: Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv. Space Res. 39, 1182–1189 (2007)

    Article  ADS  Google Scholar 

  5. Balaban, E., Centini, C., Pompeiano, O.: Tonic gravity changes after gene expression in the efferent vestibular nucleus. Neuroreport 13, 187–190 (2002)

    Article  Google Scholar 

  6. Baldwin, K.M., Edgerton, V.R., Roy, R.R.: Muscle loss in space: physiological consequences. In: Mark, H., Salkin, M., Yousef, A. (eds.) Encyclopedia of Space Sciences and Technology. Wiley, Hoboken (2003)

    Google Scholar 

  7. Baluska, F., Kreibaum, A., Vitha, S., et al.: Central root cap cells are depleted of endop-lasmic microtubules and actin microfilament bundles: implications for their role as gravity-sensing statocytes. Protoplasma 196, 212–223 (1997)

    Article  Google Scholar 

  8. Baluska, F., Mancuso, S., Volkmann, D., Barlow, P.W.: Root apex transition zone: a sig-nalling-response nexus in the root. Trends Plant Sci. 15, 402–408 (2010)

    Article  Google Scholar 

  9. Baqai, F.P., Gridley, D.S., Slater, J.M., et al.: Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl. Physiol. 106, 1935–1942 (2009)

    Article  Google Scholar 

  10. Bar-Ilan, A., Rein, G., Fernandez-Pello, A.C., Torero, J.L., Urban, D.L.: Forced forward smoldering experiments in microgravity. Exp. Therm. Fluid Sci. 28(7), 743–751 (2004)

    Article  Google Scholar 

  11. Barjaktarović, Ž., Nordheim, A., Lamkemeyer, T., et al.: Time-course of changes in protein amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation and random positioning of Arabidopsis thaliana cell cultures. J. Exp. Bot. 58, 4357–4363 (2007)

    Article  Google Scholar 

  12. Barjaktarović, Ž., Schütz, W., Madlung, J., et al.: Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot. 60, 779–789 (2009)

    Article  Google Scholar 

  13. Barmatz, M., Inseob, H.: Critical phenomena in microgravity: past, present, and future. Rev. Mod. Phys. 79, 1–52 (2007)

    Article  ADS  Google Scholar 

  14. Barratt, M.R., Pool Sam, L.: Principles of Clinical Medicine for Space Flight. Springer, New York (2008)

    Book  Google Scholar 

  15. Benoit, M.R., Brown, R.B., Todd, P., et al.: Buoyant plumes from solute gradients generated by non-motile Escherichia coli. Phys. Biol. 5, 046007 (2008)

    Article  ADS  Google Scholar 

  16. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)

    Article  MathSciNet  Google Scholar 

  17. Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: Beysens Maxus phases vib, High frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions. Phys. Rev. Lett. 95, 034502–034511 (2005)

    Article  ADS  Google Scholar 

  18. Beysens, D., Evesque, P.: Vibrational phenomena in near-critical fluids and granular matter. In: Topical Teams in the Life & physical Sciences: Towards New Research Applications in Space, SP 1281. ESA, publication division, co ESTEC, Noordwijk (2005)

    Google Scholar 

  19. Billia, B., Fecht, H.J.: Microstructure and control in advanced casting processes. In: Seibert, G., et al. (eds.) A World Without Gravity – Research in Space for Health and Industrial Processes, pp. 186–210. European Space Agency, Noordwijk (2001)

    Google Scholar 

  20. Blakely, E.A., Kleiman, N.J., Neriishi, K., et al.: Radiation cataractogeensis: epidemiology and biology. Radiat. Res. 173, 709–717 (2010)

    Article  Google Scholar 

  21. Board on Physics and Astronomy: Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century. The National Academies of Press, Washington, DC (2003)

    Google Scholar 

  22. Board on Physics and Astronomy: Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics. The National Academies of Press, Washington, DC (2006)

    Google Scholar 

  23. Bobe, L.S., et al.: Performance of water recovery and water supplies system installed in ISS RS during ISS-1 – ISS-21 missions. AIAA ICES, Barcelona (2010)

    Google Scholar 

  24. Bockstahler. K., Funke, H., Brodt, K., Lucas, J.: Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS. AIAA ICES, Barcelona (2010)

    Google Scholar 

  25. Boonstra, J.: Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J. 13, S35–S42 (1999)

    Google Scholar 

  26. Borst, A.G., van Loon, J.J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009)

    Article  Google Scholar 

  27. Böser, S., Dournon, C., Gualandris-Parisot, L., et al.: Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis). Arch. Ital. Biol. 146, 1–20 (2008)

    Google Scholar 

  28. Boyle, R., Mensinger, A.F., Yoshida, K., et al.: Neural readaptation to Earth’s gravity following return from space. J. Neurophysiol. 86, 2118–2122 (2000)

    Google Scholar 

  29. Boyle, R., Popova, Y., Varelas, J., et al.: Neurovestibular adaptation in the utricular otolith following extended periods of 3 g exposure and readaptation to 1 g. J. Gravit. Physiol. 15, P37–P38 (2008)

    Google Scholar 

  30. Bozier, O., Veyssière, B.: Study of the mechanisms of dust suspension generation in a closed vessel under microgravity conditions. Microgravity Sci. Technol. 22(2), 233–248 (2010)

    Article  Google Scholar 

  31. Bracchi, F., Gualierotti, T., Morabito, A., et al.: Multiday recordings from the primary neurons of the statoreceptors of the labyrinth of the bullfrog. Acta Otolaryngol Stockh Suppl 334, 3–27 (1975)

    Google Scholar 

  32. Brack, A., et al.: Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE. Planet. Space Sci. 50, 763–772 (2002)

    Article  ADS  Google Scholar 

  33. Bradamante, S., Villa, A., Versari, S., et al.: Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1803, 1376–1385 (2010)

    Article  Google Scholar 

  34. Brandstätter, F., et al.: Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment. Planet. Space Sci. 56, 976–984 (2008)

    Article  ADS  Google Scholar 

  35. Briart, L.G., Maher, E.P.: Reserve utilization in seeds of Arabidopsis thaliana germinating in microgravity. Int. J. Plant Sci. 165, 545–551 (2004)

    Article  Google Scholar 

  36. Buckey Jr., J.C., Lane, L.D., Levine, B.D., et al.: Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81, 7–18 (1996)

    Google Scholar 

  37. Buckley, J.C.: Space Physiology. Oxford University Press, New York (2006)

    Google Scholar 

  38. Bursens, J., Verstraete, W., Albrecht, T., et al.: A Total Converting and Biosafe Liquefac-tion Compartment for MELiSSA. 35th International Conference on Environmental Systems. Rome, July 11-14. SAE paper 2005-01-3068 (http://papers.sae.org/2005-01-3068. DOI: 10.4271! /2005-01- (2005)

  39. Castagnolo, D., Monti, R.: Thermal Marangoni flows. In: Monti, R. (ed) Earth Space Institute: Physics of Fluids in Microgravity. pp. 78–125. Taylor and Francis, London/New York (2001)

    Google Scholar 

  40. Chauveau, C., Birouk, M., Gökalp, I.: An analysis of the d2-law departure during droplet evaporation in microgravity. Int. J. of Multiphase Flow 37(3), 252–259 (2011)

    Google Scholar 

  41. Chauveau, C., Gökalp, I., Segawa, D., Kadota, T., Enomoto, H.: Effects of reduced gravity on methanol droplet combustion at high pressures. Sym. (Int.) on Combust. 28(1), 1071–1077 (2000)

    Google Scholar 

  42. Chéron, G., Leroya, A., De Saedeleera, C., et al.: Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Res. 1121, 104–116 (2006)

    Article  Google Scholar 

  43. Choukèr, A., Kaufmann, I., Kreth, S., et al.: Motion sickness, stress and the endocannabinoid system. PLoS ONE 5, e10752 (2010)

    Article  ADS  Google Scholar 

  44. Chylack, L.T., Peterson, F.A.H., et al.: NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat. Res. 172, 10–20 (2009)

    Article  Google Scholar 

  45. Clarke, A.H.: Listing’s plane and the otolith-mediated gravity vector. Prog. Brain Res. 171, 291–294 (2008)

    Article  Google Scholar 

  46. Clément, G.: Alteration of eye movements and motion perception in microgravity. Brain Res. Rev. 28, 161–172 (1998)

    Article  Google Scholar 

  47. Clément, G.: Fundamentals of Space Medicine, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  48. Clément, G., Bukley, A.P.: Artificial Gravity. Microcosm Press/Hawthorne/Springer, New York (2007)

    Book  Google Scholar 

  49. Clément, G., Moore, S.T., Raphan, T., et al.: Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp. Brain Res. 138, 410–418 (2001)

    Article  Google Scholar 

  50. Clément, G., Reschke, M.F.: Neuroscience in Space. Springer, New York (2008)

    Book  Google Scholar 

  51. Cockell, C.S.: The interplanetary exchange of photosynthesis. Orig. Life Evol. Biosph. 38, 87–104 (2008)

    Article  ADS  Google Scholar 

  52. Cohen, B., Yakushin, S.B., Holstein, G.R., et al.: Vestibular experiments in space. Adv. Space Biol. Med. 10, 105–164 (2005)

    Article  Google Scholar 

  53. Cottin, H., et al.: Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan and Mars: laboratory and in lower Earth orbit experiments. Adv. Space Res. 42, 2019–2035 (2008)

    Article  ADS  Google Scholar 

  54. Crabbe, A., Pycke, B., Van Houdt, R., et al.: Response of Pseudomonas aeruginosaPAO1 to low shear modelled microgravity involves AlgU regulation. Environ. Microbiol. 12, 1545–1564 (2010)

    Google Scholar 

  55. Crucian, B.E., Stowe, R.P., Pierson, D.L., Sams, C.F.: Immune system dysregulation following short – vs long-duration spaceflight. Avia. Space Environ. Med. 79, 835–843 (2008)

    Article  Google Scholar 

  56. Cucinotta, F.A., Durante, M.: Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431–435 (2006)

    Article  Google Scholar 

  57. Czupalla, M., Horneck, G., Blome, H.J.: The conceptual design of a hybrid life support system based the evaluation and comparison of terrestrial test beds. Adv. Space Res. 35, 1609–1620 (2005)

    Article  ADS  Google Scholar 

  58. Daiker, V, Lebert, M. Häder, D-P., et al.: The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta. 233, 1055–1062 (2011)

    Google Scholar 

  59. Demets, R., Schulte, W., Baglioni, P.: The past, present and future of BIOPAN. Adv. Space Res. 36(2), 311–316 (2005)

    Article  ADS  Google Scholar 

  60. Dreizin, E.L.: Experimental study of aluminum particle flame evolution in normal and micro-gravity. Combust. Flame 116(3), 323–333 (1999)

    Article  Google Scholar 

  61. Dupouy, M.D., Camel, D., Botalla, F., Abadie, J., Favier, J.J.: In: Thomas, B.G., Beckermann, C. (eds.) Proceedings of Modeling Welding and Advanced Solidification Processes, p. 415. TMS, Warrendale (1998)

    Google Scholar 

  62. Durante, M., Cucinotta, F.A.: Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 8, 465–472 (2008)

    Article  Google Scholar 

  63. Durante, M., Reitz, G., Angerer, O.: Space radiation research in Europe: flight experiments and ground-based studies. Radiat. Environ. Biophys. 49, 295–302 (2010)

    Article  Google Scholar 

  64. Edgerton, V.R., Roy, R.R.: Neuromuscular adaptation to actual and simulated weightlessness. Adv. Space Biol. Med. 4, 33–67 (1994)

    Article  Google Scholar 

  65. Ehrenfreund, P., Ruiterkamp, R., Peeters, Z., Foing, B., Salama, F., Martins, Z.: The ORGANICS experiments on BIOPAN V: UV and space exposure of aromatic compounds. Planet. Space Sci. 55, 383 (2007)

    Article  ADS  Google Scholar 

  66. Ellis, S.R.: Collision in space. Ergon Des. 8(1), 4–9 (2000)

    Google Scholar 

  67. European Committee for Space Standardization: Environmental control and life support (ECLS). Space Engineering Standard, ECSS-E-ST-34C, http://www.ecss.nl/(2008)

  68. European Physics Society (EPS) position paper: The need for space flight opportunities in fundamental physics (PDF). EPS, http://www.eps.org/(2005)

  69. Evans, C.A., Robinson, J.A.: International space station science research accomplishments during the assembly years: an analysis of results from 2000-2008. NASA/TP-2009-213146-Revision A, NASA Johnson Space Center: Houston. Available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/(2009). Accessed 30 Nov 2010

  70. Fasano, J.M., Massa, G.D., Gilroy, S.: Ionic signaling in plant responses to gravity and touch. J. Plant Growth Regul. 21, 71–88 (2002)

    Article  Google Scholar 

  71. Fecht, H.J.: Thermodynamic and mechanical properties of Zr-based bulk metallic glasses. Phil. Mag. B 76(4), 495–503 (1997)

    Article  Google Scholar 

  72. Fecht, H.J., Billia, B.: Breaking the Mould: Metallurgy in Microgravity, pp. 68–73. ASM American Society for metals, Cleveland, OH, New York, USA (2008)

    Google Scholar 

  73. Billia, B., Fecht, H.-J.: Microstructure and control in advanced casting processes. In: Fitton, B., Battrick, B. (eds.) A world without gravity - research in space for health and industrial processes. ESA SP-1251, European Space Agency, pp. 186–210 (2001)

    Google Scholar 

  74. Fecht, H.J., Billia, B.: Metals process simulation. In: Furrer, D., Semiatin, S.L. (eds.) Handbook ASM, vol. 22B, in print (2010)

    Google Scholar 

  75. Ferrando, A.A., Lane, H.W., Stuart, C.A., et al.: Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am. J. Physiol. 270, E627–E633 (1996)

    Google Scholar 

  76. Fortov, V.E., et al.: Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421(1–2), 1–103 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  77. Foucher, F., Fortov VE, Ivlev SA, Khrapak AG, and Morfill GE et al.: Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207, 616–630 (2010)

    Article  ADS  Google Scholar 

  78. Friedman, R. Gokoglu, S.A., Urba, D.L.: Microgravity combustion research: 1999 Program and results. NASA, Glenn Research Center, Cleveland, Ohio (1999)

    Google Scholar 

  79. Fuentes, A., Legros, G., Joulain, P., Vantelon, J.P., Torero, J.L.: Evaluation of the extinction factor in a laminar flame established over a PMMA plate in microgravity. Microgravity Sci. Technol. 17(3), 10–14 (2005)

    Article  Google Scholar 

  80. Fukuyama, H., Waseda, Y. (eds.): High-Temperature Measurements of Materials. Advances in Materials Research. Springer, Berlin (2009)

    Google Scholar 

  81. Fulget, N., Poughon, L., Richalet, J., et al.: MELISSA: global control strategy of the artificial ecosystem by using first principles models of the compartments. Adv. Space Res. 24(3), 397–405 (1999)

    Article  ADS  Google Scholar 

  82. Fuller, C.A.: How time flies - The effects of spaceflight on the circadian timing system. Gravit Space Biol 20, 42 (2006)

    Google Scholar 

  83. Furrer, D.U., Fecht, H.J.: Nickel-base superalloys for turbine discs. J. Met. 1, 14–17 (1999)

    Google Scholar 

  84. Gandin, Ch.-A. et. al.: Modeling of Heat and Solute Interactions upon Grain Structure Solidificaiton. Materials Science Forum. 649, pp 189–198 (2010)

    Google Scholar 

  85. Garrabos, Y., Chabot, T.C., Wunenburger, R., Delville, J.P., Beysens, D.: Critical boiling phenomena observed in microgravity J. Chim. Phys. 96, 1066–1073 (1999)

    Google Scholar 

  86. Gershuni, G.Z., Lyubimov, D.V.: Thermal Vibrational Convection. Wiley, New York (1998)

    Google Scholar 

  87. Godia, F., Albiol, J., Montesinos, J.L., et al.: MELISSA: a loop of interconnected bioreactors to develop life support in space. J. Biotechnol. 99(3), 319–330 (2002)

    Article  Google Scholar 

  88. Godia, F., Albiol, J., Perez, J., et al.: The MELISSA pilot plant facility as an integration test-bed for advanced life support systems. Adv. Space Res. 34(7), 1483–1493 (2004)

    Article  ADS  Google Scholar 

  89. Gorbunova, A.V.: Effects of space-flight factors on cytochemical characteristics of the motor analyzer neurons. Vestn. Ross. Akad. Med. Nauk 5, 15–21 (2010). Russian

    Google Scholar 

  90. GoSpace – Industrial Research in Microgravity, The target of GoSpace as a one step integrated service is the stimulation of entrepreneurs for microgravity research. The initiative provides capabilities to analyze relevance of gravity to solve industrial research issues, give a user-friendly access for industrial researchers and investigate commercial market interest. Josef – Winner St. 1–3, D-58123 Bonn, See www.gospace.de

  91. Grigoriev, A.I., Kozerenko, O.P. Myasnikov, V.I.: Selected problems of psychological support of prolonged space flights. Paper presented at the 38th congress of the international astronautical federation, Stockholm (1987)

    Google Scholar 

  92. Grizzaffi, L., Lobascio, C., Bruno, G., et al.: ATV water preparation campaign. 38th ICES, San Francisco (2008) SAE International. Paper is ‘http://papers.sae.org/2008-01-2192

  93. Gros, J.B., Poughon, L., Lasseur, C., et al.: Recycling efficiencies of C, H, O, N, S, and P elements in a biological life support system based on microorganisms and higher plants. Adv. Space Res. 31(1), 195–199 (2003)

    Article  ADS  Google Scholar 

  94. Guan, Y., Fray, N., Coll, P., Macari, F., Chaput, D., Raulin, F., Cottin, H.: UVolution: compared photochemistry of prebiotic organic compounds in low earth orbit and in the laboratory. Planet. Space Sci. 58, 1327–1346 (2010)

    Article  ADS  Google Scholar 

  95. Guéguinou, N., Huin-Schohn, C., Bascove, M., et al.: Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J. Leukoc. Biol. 86, 1027–1038 (2009)

    Article  Google Scholar 

  96. Gundlin, R.: Private communication. ACCESS Aachen, Germany. Final report EU/ESA integrated project IMPRESS (2008)

    Google Scholar 

  97. Günther, B.: Final report EU/ESA integrated project IMPRESS (2008)

    Google Scholar 

  98. Güttler, C., Krause, M., Geretshauser, R.J., Speith, R., Blum, J.: The physics of protoplanetesimal dust agglomerates. IV. Towards a dynamical collision model. Astrophys. J. 701, 130–141 (2009)

    Article  ADS  Google Scholar 

  99. Häder, D.P., Hemmersbach, R., Lebert, M.: Gravity and the Behaviour of Unicellular Organisms. University Press, Cambridge (2005)

    Book  Google Scholar 

  100. Hahn, H., Müller, M., Löwenheim, H.: Whole organ culture of the postnatal sensory inner ear in simulated microgravity. J. Neurosci. Meth. 171, 60–71 (2008)

    Article  Google Scholar 

  101. Hampp, R., Hoffmann, E., Schönherr, K., et al.: Fusion and metabolism of plant cells as affected by microgravity. Planta 203, S42–S53 (1997)

    Article  Google Scholar 

  102. Haupt, A., Straub, J.: Evaluation of the isochoric heat capacity measurements at the critical isochore of SF6performed during the German Spacelab Mission D-2. Phys. Rev. E 59, 1795–1802 (1999)

    Article  ADS  Google Scholar 

  103. Hemmersbach, R., Braun, M.: Gravity-sensing and gravity-related signalling pathways in unicellular model systems of protists and plants. Signal Transduct 6, 432–442 (2006)

    Article  Google Scholar 

  104. Hendrickx, L., Mergeay, M.: From the deep sea to the stars: human life support through minimal communities current opinion. Microbiology 10, 231–237 (2007)

    Google Scholar 

  105. Hendrickx, L., De Wever, H., Hermans, V., et al.: Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 77–86 (2006)

    Article  Google Scholar 

  106. Herranz, R., Benguria, A., et al.: Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol. Ecol. 19, 4255–4264 (2010)

    Google Scholar 

  107. Hinrichsen, H., Wolf, D.E. (eds.): The Physics of Granular Media. Wiley-VCH Verlag GmbH & Co, Weinheim (2004). ISBN 978-3-527-60362-6

    Google Scholar 

  108. Hockey, G.R.J.: Compensatory control in the regulation of human performance under stress and high workload: a cognitive energetical framework. Biol. Psychol. 45, 73–93 (1997)

    Article  Google Scholar 

  109. Hockey, G.R.J., Sauer, J.: Cognitive fatigue and complex decision-making under prolonged isolation and confinement. In: Bonting, S.L. (ed.) Advances in Space Biology and Medicine, vol. 5. JAI Press, Greenwich (1996)

    Google Scholar 

  110. Hockey, G.R.J., Wiethoff, M.: Cognitive fatigue in complex decision making. In: Bonting, S.L. (ed.) Advances in Space Biology and Medicine, vol. 3. JAI Press, Greenwich (1993)

    Google Scholar 

  111. Hofmeister, P., Blum, J., Heißelmann, D., The flow of granular matter under reduced-gravity conditions. In: Powders & Grains (2009)

    Google Scholar 

  112. Honne, A., Schumann-Olsen, H., Kaspersen, et al.: ANITA Air monitoring on the international space station part 2: air analyses. SAE Int. J. Aerosp 1, 178–192 (2009)

    Google Scholar 

  113. Horn, E.R.: The development of gravity sensory systems during periods of altered gravity dependent sensory input. Adv. Space Biol. Med. 9, 133–171 (2003)

    Article  Google Scholar 

  114. Horn, E.: Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevistadpoles are related to development and the occurrence of tail lordosis. J. Exp. Biol. 209, 2847–2858 (2006)

    Article  Google Scholar 

  115. Horn, E.: Signal transduction in vestibular adaptation to microgravity - A still unsolved problem. Signal Transduct. 7, 240–247 (2007)

    Article  Google Scholar 

  116. Horn, E.: Sensitization as a basic principle of vestibular adaptation to microgravity. J. Gravit. Physiol. 15, P27–P28 (2008)

    Google Scholar 

  117. Horn, E., Böser, S., Franz, M., et al.: Development of the flight hardware for the experiment XENOPUS on the Kubik BIO4-mission. Microgravity Sci. Technol. (2010). doi:10.1007/s12217-010-9182

    Google Scholar 

  118. Horneck, G., Facius, R., Reichert, M., et al.: HUMEX, A Study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP 1264. ESA-ESTEC, Noordwijk (2003)

    Google Scholar 

  119. Horneck, G., Klaus, D., Mancinelli, R.: Space microbiology. Microbiol. Mol. Rev. 2010, 121–156 (2010)

    Article  Google Scholar 

  120. Hu, X., Neill, S.J., Tang, Z., Cai, W.: Nitric oxide mediates gravitropic bending in soy-bean roots. Plant Physiol. 137, 663–670 (2005)

    Article  Google Scholar 

  121. Hughes-Fulford, M., Boonstra, J.: Cell mechanotransduction: cytoskeleton and related signalling pathways. In: Monici, M., Van Loon, J. (eds.) Cell Mechanochemistry, Biological Systems and Factors Inducing Mechanical Stress, pp. 75–95. Transword Research Network, Trivandrum (2010). ISBN 978-81-7895-458-5

    Google Scholar 

  122. Hwee, D.T., Bodine, S.C.: Age-related deficit in load-induced skeletal muscle growth. J. Gerontol. Biol. Sci. Med. Sci. 64, 618–628 (2009)

    Article  Google Scholar 

  123. Iida, T., Guthrie, R.I.L.: The Physical Properties of Liquid Metals, pp. 168–169. Clarendon Press, Oxford (1988)

    Google Scholar 

  124. Jiang, J.: MD – simulation of the atomic structure of glassy Zr-Cu metals. Appl. Phys. Lett. 92, 011902 (2008)

    Article  ADS  Google Scholar 

  125. Joo, H.J., Bae, Y.S., Lee, J.S.: Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126, 1055–1060 (2001)

    Article  Google Scholar 

  126. Joulain, P., Vietoris, T., Torero, J.: Gas-gas and gas-solid laminar flat plate diffusion flame in microgravity: Structure and stability. Microgravity Sci. Technol. 13(1), 3–7 (2001)

    Article  Google Scholar 

  127. Kamada, M., Higashitani, A., Ishioka, N.: Proteomic analysis of Arabidopsis root gravitropism. Biol. Sci. Space 19, 148–154 (2005)

    Article  Google Scholar 

  128. Kanas, N., Manzey, D.: Space Psychology and Psychiatry, 2nd edn. Kluwer, Dordrecht (2008)

    Google Scholar 

  129. Kanki, B., Rogers, D., Bessone, L., Parke, B., Sandal, G.M., Whiteley, I.: Team performance and space safety. J Br Interpl Soc 62(7/8), 273–281 (2009)

    ADS  Google Scholar 

  130. Kaufmann, I., Schachtner, T., Feuerecker, M., et al.: Parabolic flight primes cytotoxic capabilities of polymorphonuclear leucocytes in humans. Eur J Clin Invest 39, 723–728 (2009)

    Article  Google Scholar 

  131. Kelton, K.F.: Crystal nucleation in liquids and glasses. In: Ehrenreich, H., Turnbull, D. (eds.), Solid state physics. Vol. 45, pp. 75–179. Academic Press, New York (1991)

    Google Scholar 

  132. Kerwin, J., Seddon, R.: Eating in space - from an astronaut perspective. Nutrition 18, 921–925 (2002)

    Article  Google Scholar 

  133. Klaus, D., Simske, S., Todd, P., et al.: Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143, 449–455 (1997)

    Article  Google Scholar 

  134. Klaus, D.M.: Clinostats and bioreactors. Gravit. Space Biol. Bull. 14, 55–64 (2001)

    Google Scholar 

  135. Krause, M., Bräucker, R., Hemmersbach, R.: Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J. Exp. Biol. 213, 161–171 (2010)

    Article  Google Scholar 

  136. Kuang, A., Popova, A., McClure, G., Musgrave, M.E.: Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. Int. J. Plant Sci. 166, 85–96 (2005)

    Article  Google Scholar 

  137. Kumagai, S.: Combustion of fuel droplets in a falling chamber with special reference to the effect of natural convection. Jet Propulsion 26(9), 786–786 (1956)

    MathSciNet  Google Scholar 

  138. Kumar, G., Thang, H.X., Schroers, J.: Nanomoulding with amorphous metals. Nature 457, 868 (2009)

    Article  ADS  Google Scholar 

  139. Lafage-Proust, M.H., Collet, P., Dubost, J.M., et al.: Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am. J. Physiol. 274, R324–R334 (1998)

    Google Scholar 

  140. Lane, H.W., Feeback, D.L.: History of nutrition in space flight: overview. Nutrition 18, 797–804 (2002)

    Article  Google Scholar 

  141. Lang, T., LeBlanc, A., Evans, H., et al.: Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 19, 1006–1012 (2004)

    Article  Google Scholar 

  142. Lang, T.F., Leblanc, A.D., Evans, H.J., et al.: Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J. Bone Miner. Res. 21, 1224–1130 (2006)

    Article  Google Scholar 

  143. Lasseur, C., Brunet, J., de Weever, H., et al.: MELiSSA: the European project of closed life support system. Gravit. Space Biol. 23(2), 3–12 (2010)

    Google Scholar 

  144. Lasseur, C., Verstraete, W., Gros, J.B., et al.: MELISSA: a potential experiment for a precursor mission to the Moon. Adv. Space Res. 18(11), 111–117 (1996)

    Article  ADS  Google Scholar 

  145. Law, C.K., Faeth, G.M.: Opportunities and challenges of combustion in microgravity. Prog. Energy Combust. Sci. 20(1), 65–113 (1994)

    Article  Google Scholar 

  146. Lazarus, R.S.: Emotion and Adaptation. Oxford Univ. Press, New York (1991)

    Google Scholar 

  147. Lebsack, T.W., Fa, V., Woods, C.C., et al.: Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. Cell Biochem 110, 372–381 (2010)

    Google Scholar 

  148. Lebaigue, O., Colin, C., Larue de Tournemine, A.: Forced convection boiling and condensation of ammonia in microgravity 13, 250–259 (2006)

    Google Scholar 

  149. Legrand, B., Chauveau, C., Shafirovich, E., Goldshleger, U., Carrea, E., Mounaim-Rousselle, C., Rouan, J.P., Gökalp, I.: Combustion of magnesium particles in carbon dioxide under microgravity conditions. J. Phys. IV 11(6), 311–314 (2001)

    Google Scholar 

  150. Legros, G., Joulain, P., Vantelon, J.P., Fuentes, A., Bertheau, D., Torero, J.: Soot volume fraction measurements in a three-dimensional laminar diffusion flame established in microgravity. Combustion Science and Technology 178(5), 813–835 (2006)

    Google Scholar 

  151. Leitz, G., Kang, B.-H., Schoenwaelder, M.E.A., Staehelin, L.A.: Statolith sedimentation ki-netics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Ara-bidopsis columella cells. Plant Cell 21, 843–860 (2009)

    Article  Google Scholar 

  152. Léone, G.: The effect of gravity on human recognition of disoriented objects. Brain Res. Rev. 28, 203–214 (1998)

    Article  Google Scholar 

  153. Leroy, B., Rosier, C., Erculisse, V., et al.: Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 10, 2281–2291 (2010)

    Article  Google Scholar 

  154. Leys, N., Baatout, S., Rosier, C., et al.: The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Leeuwenhoek 96, 227–245 (2009)

    Article  Google Scholar 

  155. Lissens, G., Verstraete, W., Albrecht, T., et al.: Advanced Anaerobic Bioconversion of Lignocellulosic Waste for Bioregenerative Life Support Following Thermal Water Treatment and Biodegradation by Fibrobacter Succinogenes. Biodegradation 15(3), 173–183 (2004)

    Article  Google Scholar 

  156. van Loon, J.J.W.A., Van Laar, M.C., Korterik, J.P., et al.: An atomic force microscope operating at hypergravity for in situ measurement of cellular mechano-response. J. Microsc. 233, 234–243 (2009)

    Article  MathSciNet  Google Scholar 

  157. van Loon, J.J.W.A.: Some history and use of the Random Positioning Machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)

    Article  ADS  Google Scholar 

  158. van Loon, J.J.W.A.: The gravity environment in space experiments. In: Brinckmann, E. (ed.) Biology in Space and Life on Earth, pp. 17–32. Wiley-VCH, Weinheim (2007)

    Chapter  Google Scholar 

  159. van Loon, J.J.W.A.: Mechanomics and physicomics in gravisensing. Microgravity Sci. Technol. 21, 159–167 (2009)

    Article  Google Scholar 

  160. McIntyre, J., Zago, M., Berthoz, A., et al.: Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–695 (2001)

    Article  Google Scholar 

  161. Mader, M., Misbah, C., Podgorski, T.: Dynamics and rheology of vesicles under a shear flow under gravity and microgravity. Microgravity Sci. Technol. XVIII(3/4), 200–2003 (2006)

    Article  Google Scholar 

  162. Mancuso, S., Barlow, P.W., Volkmann, D., Baluska, F.: Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. Plant Signal Behav. 1, 52–58 (2006)

    Article  Google Scholar 

  163. Mancuso, S., Boselli, M.: Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214, 767–774 (2002)

    Article  Google Scholar 

  164. Manzano, A.I., et al.: Germination of Arabidopsis Seed in space and in simulated microgravity: alterations in root cell growth and proliferation. Microgravity Sci. Technol. 21, 293–207 (2009)

    Article  Google Scholar 

  165. Manzey, D.: Monitoring of mental performance during spaceflight. Aviat Space Env Med 71, A69–A75 (2000)

    Google Scholar 

  166. Marstechcare Final Report: ESA Contract ESTEC N°: 16423/02/NL/LvH (2002)

    Google Scholar 

  167. Martzivanou, M., Hampp, R.: Hyper-gravity effects on the Arabidopsis transcriptome. Physiol. Plant. 118, 221–231 (2003)

    Article  Google Scholar 

  168. Matía, I., González-Camacho, F., Herranz, R., et al.: Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 167, 184–193 (2010)

    Article  Google Scholar 

  169. Mariotti, M., Maier, J.A.: Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J. Cell. Biochem. 104, 129–135 (2008)

    Article  Google Scholar 

  170. Martinez, I., Perales, J.: Mechanical Behavior of liquid bridges in microgravity. In: Monti, R (ed) Earth Space Institute: Physics of Fluids in Microgravity. pp. 21–45. Taylor and Francis, London/New York (2001)

    Google Scholar 

  171. Mastroleo, F., Van Houdt, R., Leroy, B., et al.: Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 3, 1402–1419 (2009)

    Article  Google Scholar 

  172. Medina, F.J., Herranz, R.: Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal Behav. 5, 176–179 (2010)

    Article  Google Scholar 

  173. Mergeay, M., Verstraete, W., Dubertret, G., et al.: MELISSA – A micro-organisms based model for CELSS development. In: Proceedings of the 3 rd European Symposium on Space Thermal Control & Life Support System, Noordwijk, European Space Agency!’ s -288. (1988)

    Google Scholar 

  174. Mialdun, A., Ryzhkov, I.I., Melnikov, D.E., Shevtsova, V.: Experimental evidence of thermovibrational convection in low gravity. Phys. Rev. Lett. 101, 084501 (2008)

    Article  ADS  Google Scholar 

  175. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S.: Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures. Combust. Flame 146(3), 391–406 (2006)

    Article  Google Scholar 

  176. Miller, R., Liggieri, L.: Interfacial Rheology. Brill Publications, Leiden (2009). ISBN 978 90 04 17586 0

    Google Scholar 

  177. Miyamoto, A., Shigematsu, T., Fukunaga, T., et al.: Medical baseline data collection on bone and muscle change with space flight. Bone 22(Suppl 5), 79S–82S (1998)

    Article  Google Scholar 

  178. Mizukami, Y.: A matter of size: developmental control of organ size in plants. Curr. Opin. Plant Biol. 4, 533–539 (2001)

    Article  Google Scholar 

  179. Moes, M.J.A., Gielen, J.C., Bleichrodt, R.-J., et al.: Simulation of microgravity by magnetic levitation and random positioning: effect on human A431 cell morphology. Microgravity Sci. Technol. 23, 249–261 (2011)

    Google Scholar 

  180. Monti, R., Earth Space Institute: Physics of Fluids in Microgravity. Taylor and Francis, London/New York (2001)

    Google Scholar 

  181. Moorman, S.J., Cordova, R., Davies, S.A.: A critical period for functional vestibular development in zebrafish. Dev. Dyn. 223, 285–291 (2002)

    Article  Google Scholar 

  182. Morfill, G.E., Ivlev, A.V.: Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353 (2009)

    Article  ADS  Google Scholar 

  183. Morukov, V.B., Rykova, M.P., Antropova, E.N., et al.: Indicators of innate and adaptive immunity of cosmonauts after long-term space flight to international space station. Fiziol. Cheloveka 36, 19–30 (2010)

    Google Scholar 

  184. Moseyko, N., Zhu, T., Chang, H.S., et al.: Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol. 130, 720–728 (2002)

    Article  Google Scholar 

  185. Muller, M., Aceto, J., Dalcq, J., et al.: Small fish species as powerful model systems to study vertebrate physiology in space. J. Gravit. Physiol. 15, P253–P254 (2008)

    Google Scholar 

  186. Muller, M., Dalcq, J., Aceto, J., et al.: The function of the Egr1 transcription factor in cartilage formation and adaptation to microgravity in Danio rerio. J. Appl. Ichthyol. 26, 239–244 (2010)

    Article  Google Scholar 

  187. NCRP: Radiation protection guidance for activities in Low-Earth orbit. NCRP Report No. 132, Bethesda (2000)

    Google Scholar 

  188. NCRP: Information needed to make radiation protection recommendations for space missions beyond Low-Earth Orbit. NCRP Report No. 153,Bethesda (2006)

    Google Scholar 

  189. Nikolayev, V.S., Chatain, D., Garrabos, Y., Beysens, D.: Experimental evidence of the vapour recoil mechanism in the boiling crisis. Phys. Rev. Lett. 97, 184503 (2006)

    Article  ADS  Google Scholar 

  190. Nusgens, B.V., Chometon, G., Guignandon, A., et al.: Role of the RhoGTPases in the cellular receptivity and reactivity to mechanical signals including microgravity. J. Gravit. Physiol. 12, 269–270 (2005)

    Google Scholar 

  191. Oganov, V.S., Grigoriev, A.I., Voronin, L.I., et al.: Bone mineral density in cosmonauts after flights lasting 4.5–6 months on the Mir orbital station. Aviakosm. Ekolog. Med. 26, 20–24 (1992)

    Google Scholar 

  192. Olson-Francis, K., Cockell, C.S.: Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Meth. 80, 1–13 (2010)

    Article  Google Scholar 

  193. Oyagi, H., Shigeno, H., Mikami, M., Kojima, N.: Flame-spread probability and local interactive effects in randomly arranged fuel-droplet arrays in microgravity. Combust. Flame 156(4), 763–770 (2009)

    Article  Google Scholar 

  194. Paa, W., Triebel, W., Eigenbrod, C., Larionov, M., Giesen, A.: The “Advanced Disk Laser” - An onboard laser diagnostics system for drop tower experiments. Microgravity Sci. Technol. 17(3), 71–74 (2005)

    Article  Google Scholar 

  195. Paille, C., Albiol, J., Curwy, R., et al.: FEMME: a precursor experiment for the evaluation of bioregenerative life support systems. Planet. Space Sci. 48, 515–521 (2000)

    Article  ADS  Google Scholar 

  196. Paloski, W.P., Oman, C.M., Bloomberg, J.J., et al.: Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J. Gravit. Physiol. 15, 1–29 (2008)

    Google Scholar 

  197. Parnell, J., et al.: Preservation of organic matter in the STONE 6 artificial meteorite experiment. Icarus 212, 390–402 (2011)

    Google Scholar 

  198. Passerone, A., Liggieri, L. and Ravera, F.: Interfacial Phenomena. In: Monti, R., Earth (ed) Space Institute: Physics of Fluids in Microgravity. Taylor and Francis, London/New York (2001) pp. 46–77; Legros, G., Joulain, P., Vantelon, J.P., Fuentes, A., Bertheau, D. and Torero, J. Soot volume fraction measurements in a three-dimensional laminar diffusion flame established in microgravity. Combust. Sci. Technol. 178(5), 813–835 (2006)

    Google Scholar 

  199. Perbal, G., Driss-Ecole, D.: Mechanotransduction in gravisensing cells. Trends Plant Sci. 8, 498–504 (2003)

    Article  Google Scholar 

  200. Perrot-Rechenmann, C.: Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446 (2010)

    Article  Google Scholar 

  201. Plaut, K., Maple, R.L., Wade, C.E., et al.: Effects of prenatal spaceflight on vestibular responses in neonatal rats. J. Appl. Physiol. 89, 2318–2324 (2003)

    Google Scholar 

  202. Pollard, E.C.: Theoretical studies on living systems in the absence of mechanical stress. J. Theor. Biol. 8, 113–123 (1965)

    Article  Google Scholar 

  203. Pompeiano, O., Balaban, E., d’Ascanio, P., et al.: Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 124, 53–69 (2004)

    Article  Google Scholar 

  204. Pompeiano, O., d’Ascanio, P., Centini, C., et al.: Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 114, 135–155 (2002)

    Article  Google Scholar 

  205. Rahmann, H., Anken, R.H.: Gravity related research with fishes–perspectives in regard to the upcoming International Space Station, ISS. Adv. Space Res. 30(4), 697–710 (2002)

    Article  ADS  Google Scholar 

  206. Rahmann, H., Hilbig, R., Flemming, J., et al.: Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2. Adv. Space Res. 17, 121–124 (1996)

    Article  ADS  Google Scholar 

  207. van Ras, N., Krooneman, J., Ogink, N., et al.: Biological air filter for air-quality control. In: Wilson, A. (ed.) Microgravity Applications Programme: Successful Teaming of Science and Industry (ESA SP-1290 ESTEC), pp. 270–280. ESA Publications Division, Noordwijk (2005). ISBN 92-9092-971-5, 2005

    Google Scholar 

  208. Reitz, G.: Characteristics of the radiation field in low Earth orbit and in deep space. Z. Med. Phys. 18, 233–243 (2008)

    Article  Google Scholar 

  209. Renn, J., Seibt, D., Goerlich, R., et al.: Simulated microgravity upregulates gene expression of the skeletal regulator Core binding Factor [alpha]1/Runx2 in Medaka fish larvae in vivo. Adv. Space Res. 38, 1025–1031 (2006)

    Article  ADS  Google Scholar 

  210. Renn, J., Winkler, C., Schartl, M., et al.: Zebrafish and medaka as models for bone research including implications regarding space-related issues. Protoplasma 229, 209–214 (2006)

    Article  Google Scholar 

  211. Rettberg, P., Rabbow, E., Panitz, C., Horneck, G.: Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv. Space Res. 33, 1294–1301 (2004)

    Article  ADS  Google Scholar 

  212. Riley, D.A., Thompson, J.L., Prippendorf, B., et al.: Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair. Basic Appl Myol. 5, 139–145 (1995)

    Google Scholar 

  213. Rittweger, J., Felsenberg, D.: Bed-rest induced bone loss continues after re-ambulation in humans. In: Proceedings of the Human Physiology Meeting, p. C43. Physiological Society, King’s College, London (2004)

    Google Scholar 

  214. Rivolier, J.: L’Homme dans l’espace: une approche psycho-écologique des vols habitués. PUF, Paris (1997)

    Google Scholar 

  215. Ronney, P.D.: Near-limit flame structures at low Lewis number. Combust. Flame 82(1), 1–14 (1990)

    Article  Google Scholar 

  216. Ronney, P.D.: Understanding combustion processes through microgravity research. Sym. (Int.) on Combust. 27(2), 2485–2506 (1998)

    Article  Google Scholar 

  217. Saint-Jalmes, A., Marze, S., Ritacco, H., Langevin, D., Bail, S., Dubail, J., Roux, G., Guingot, L., Tosini, L., Sung, P.: Diffusive liquid transport in porous and elastic materials: the case of foams in microgravity. Phys. Rev. Lett. 98, 058303 (2007)

    Article  ADS  Google Scholar 

  218. Sallam, E.A., Schmäh, M., Horn, E.R.: Hardware development for electrophysiological long-term studies in space. J. Gravit. Physiol. 12, P271–P272 (2005)

    Google Scholar 

  219. Salnitski, V.P., Dudukin, A.V., Johannes, B.: Evaluation of operator’s reliability in long-term isolation (the “pilot”-test). In: Baranov, V.M. (ed.) Simulation of Extended Isolation: Advances and Problems, pp. 30–50. Slovo, Moscow (2001)

    Google Scholar 

  220. Salter, D.M., Heißelmann, D., Chaparro, G., van der Wolk, G., Reißaus, P., de Kuyper, E., Tuijn, P., Dawson, R.W., Hutcheon, M., Drinkwater, G., Stoll, B., Gebauer, K., Molster, F.J., Linnartz, H., Borst, G., Fraser, H.J., Blum, J.: A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures. Rev. Sci. Instrum. 80, 074501 (2009)

    Article  ADS  Google Scholar 

  221. Sánchez Tarifa, C., Salvá J.J., López Juste, G.: Flame Spreading over Solid Fuels at Microgravity conditions Results Obtained in the Minitexus Rocket and Future Programmes. European Space Agency (Special Publication) ESA SP (vol. 385), pp. 281–288, ESA Publications Division, Noordwijk, Netherlands (1996)

    Google Scholar 

  222. Sancho, L., et al.: Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7, 433–454 (2007)

    Article  ADS  Google Scholar 

  223. Sandal, G.M., Bergan, T., Warnche, M., Værnes, R., Ursin, H.: Psychological reactions during polar expeditions and isolation in hyperbaric chambers. Aviat Space Env Med 67, 227–234 (1996)

    Google Scholar 

  224. Sandal, G.M., Bye, H.H., van de Vijver, F.: Personal values and crew compatibility. Results from a 105 days simulated space mission. Acta Astronautica 69(3–4), 141–149 (2011)

    Google Scholar 

  225. Sauer, J., Hockey, G.R.J., Wastell, D.: Maintenance of complex performance during a 135-day spaceflight simulation. Aviat Space Env Med 70, 236–244 (1999)

    Google Scholar 

  226. Schutz, B.F.: Fundamental Physics in ESA’s Cosmic Visions Pan (PDF), ESA Publication SP-588 (2005)

    Google Scholar 

  227. Sebastian, C., Eßeling, K., Horn, E.: Altered gravitational forces affect the development of the static vestibuloocular reflex in fish (Oreochromis mossambicus). J. Neurobiol. 46, 59–72 (2001)

    Article  Google Scholar 

  228. Seibert, G., et al.: A world without gravity – Research in space for health and industrial processes. European Space Agency (2001)

    Google Scholar 

  229. Selye, H.: A syndrome produced by diverse nocuous agents. Nature 138, 30–32 (1936)

    Article  ADS  Google Scholar 

  230. Servotte, S., Zhang, Z., Lambert, Ch, et al.: Establishment of stable human fibroblast cell lines constitutively expressing active Rho-GTPases. Protoplasma 229(2–4), 215–220 (2006)

    Article  Google Scholar 

  231. Shayler, D.A.: Disasters and Accidents in Manned Spaceflight. Praxis, Chichester (2000)

    Google Scholar 

  232. Shimada, N., Moorman, S.J.: Changes in gravitational force cause changes in gene expression in the lens of developing zebrafish. Dev. Dyn. 235, 2686–2694 (2006)

    Article  Google Scholar 

  233. Shimada, N., Sokunbi, G., Moorman, S.J.: Changes in gravitational force affect gene expression in developing organ systems at different developmental times. BMC Dev. Biol. 5, 10 (2005)

    Article  Google Scholar 

  234. Sibonga, J.D., Evans, H.J., Sung, H.G., et al.: Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone 41, 973–978 (2007)

    Article  Google Scholar 

  235. Sievers, A., Buchen, B., Volkmann, D., Hejnowicz, Z.: Role of cytoskeleton in gravity perception. In: Lloyd, C.W. (ed.) The Cytoskeletal Basis of Plant Growth and Form, pp. 169–182. Academic, London (1991)

    Google Scholar 

  236. Slenzka, K., Appel, R., Rahmann, H.: Development and altered gravity dependent changes in glucose-6-phosphate dehydrogenase activity in the brain of the cichlid fish Oreochromis mossambicus. Neurochem. Int. 26, 579–585 (1995)

    Article  Google Scholar 

  237. Smith, A.M., Heer, M.H.: Calcium and bone metabolism during space flight. Nutrition 18, 849–852 (2002)

    Article  Google Scholar 

  238. Smith, S.M., Zwart, S.R., Block, G., et al.: The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–443 (2005)

    Google Scholar 

  239. Space Studies Board: Assessment of Directions in Microgravity and Physical Sciences Research at NASA. The National Academies of Press, Washington, DC (2003)

    Google Scholar 

  240. Stanga, J., Baldwin, K., Masson, P.: Joining forces: the interface of gravitropism and plastid protein import. Plant Signal Behav. 4, 933–941 (2009)

    Article  Google Scholar 

  241. Stein, T.P.: Nutrition in the space station era. Nutr. Res. Rev. 14, 87–117 (2001)

    Article  ADS  Google Scholar 

  242. Stowe, R.P., Sams, C.F., Pierson, D.L.: Effects of mission duration on neuroimmune responses in astronauts. Aviat. Space Environ. Med. 74, 1281–1284 (2003)

    Google Scholar 

  243. Stout, S.C., Porterfield, D.M., Briarty, L.G., et al.: Evidence of root zone hypoxia in Bras-sica rapa L. grown in microgravity. Int. J. Plant Sci. 162, 249–255 (2001)

    Article  Google Scholar 

  244. Streb, C., Richter, P., Ntefidou, M., et al.: Sensory transduction of gravitaxis in Euglena gracilis. J. Plant Physiol. 159, 855–862 (2002)

    Article  Google Scholar 

  245. Suedfeld, P.: Groups in isolation and confinement: Environments and experiences. In: Harrison, A.A., Clearwater, Y.A., McKay, C.P. (eds.) From Antarctica to Outer Space. Springer, New York (1991)

    Google Scholar 

  246. Suedfeld, P.: Invulnerability, coping, salutogenesis, integration: four phases of space psychology. Aviat Space Env Med 76, B61–B66 (2005)

    Google Scholar 

  247. Sundaresan, A., Pellis, N.R.: Cellular and genetic adaptation in low-gravity environments. Ann. NY Acad. Sci. 1161, 135–146 (2009)

    Article  ADS  Google Scholar 

  248. Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., Möhlmann, D.: Plasma Crystal: Coulomb Crystallization in a Dusty Plasma. Phys. Rev. Lett. 73, 652–655 (1994)

    Article  ADS  Google Scholar 

  249. Tikhomirov, A.A., Ushakova, S.A., Kovaleva, N.P., Lamaze, B., Lobo, M., Lasseur, C.: Biological life support systems for a Mars mission planetary base: Problems and prospects. Adv. Space Res. 40, 1741–1745 (2007)

    Article  ADS  Google Scholar 

  250. Tomi, L., Kealey, D., Lange, M., Stefanowska, P., Doyle, V.: Cross-cultural training requirements for long-duration space missions: Results of a survey of International Space Station astronauts and ground support personnel. Paper delivered at the human interactions in space symposium, Beijing, 21 May 2007

    Google Scholar 

  251. Torero, J.L., Bonneau, L., Most, J.M., Joulain, P.: The effect of gravity on a laminar diffusion flame established over a horizontal flat plate. Sym. (Int.) on Combust. 25(1), 1701–1709 (1994)

    Article  Google Scholar 

  252. Ullrich, O., Huber, K., Lang, K.: Signal transduction in cells of the immune system in microgravity. Cell Commun Signal 6, 9 (2008)

    Article  Google Scholar 

  253. van Vaerenbergh, S., Legros, J.C.: Diffusion and thermodiffusion in microgravity. In: Monti, R. (ed) Earth Space Institute: Physics of Fluids in Microgravity. pp. 178–222. Taylor and Francis, London/New York (2001).

    Google Scholar 

  254. Vailati, A., Giglio, M.: Giant fluctuations in a free diffusion process. Nature 390, 262–265 (1997)

    Article  ADS  Google Scholar 

  255. Vatsa, A., Smit, T.H., Klein-Nulend, J.: Mechanobiology of bone: from cell to organ. In: Monici, M., Van Loon, J., (eds.) Cell Mechanochemistry, Biological Systems and Factors Inducing Mechanical Stress, pp. 131–152. Transworld Research Network, Trivandrum (2010). ISBN 978-81-7895-458-5

    Google Scholar 

  256. Versari, S., Villa, A., Bradamante, S., Maier, J.A.: Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim. Biophys. Acta 7, 1645–1652 (2007)

    Article  Google Scholar 

  257. Versari, S., Villa, A., Helder, M.N., et al.: Effects of gravity on proliferation and differentiation of adipose tissue-derived stem cells. J Gravitat Physiol 14, 127–128 (2007)

    Google Scholar 

  258. Vico, L., Collet, P., Guignandon, A., et al.: Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355, 1607–1611 (2000)

    Article  Google Scholar 

  259. Vladimirov, S.V., Ostrikov, K., Samarian, A.A.: Physics and Application of Complex Plasmas. World Scientific Press, Singapore (2005). ISBN 978-1-86094-572-4

    Book  Google Scholar 

  260. Vreeburg, J.P.B., Veldman, A.E.P.: Transient and sloshing motions in an unsupported container In: Monti, R. (ed) Earth Space Institute: Physics of Fluids in Microgravity. Taylor and Francis, London/New York (2001). pp. 293–321

    Google Scholar 

  261. Vukanti, R., Mintz, E., Leff, L.: Changes in gene expression of E. Coli under conditions of modelled reduced gravity. Microgravity Sci. Technol. 20, 41–57 (2008)

    Article  Google Scholar 

  262. van der Waarde, J.J., van Ras, N.J.P., Ogink, N. et al: Biological airfilter for air quality control of life support systems in closed environments. Proceedings of the 35th COSPAR Scientific Assembly. 18 – 25 July, Paris, France., p. 4399 (2004)

    Google Scholar 

  263. Wade, C.E.: Responses across the gravity continuum: hypergravity to microgravity. Adv. Space Biol. Med. 10, 225–245 (2005)

    Article  Google Scholar 

  264. Walther, D.C., Fernandez-Pello, A.C., Urban, D.L.: Space shuttle based microgravity smoldering combustion experiments. Combust. Flame 116(3), 398–414 (1999)

    Article  Google Scholar 

  265. Wang, H., Zheng, H., Sha, W., et al.: A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation. J. Exp. Bot. 57, 827–835 (2006)

    Article  Google Scholar 

  266. Waters, G., Dixon, M.A., Masot, A. et al.: Static mass balance studies of the MELiSSA pilot plant. In: Integration of a Higher Plant Chamber. 34th International Conference on Environmental Systems. Colorado Springs, CO, USA, SAE paper 2004-01-2579, SAE International USA. (http://papers.sae.org/2004-01-2579, DOI: 10.4271/2004-! 01-2579)

  267. Wieland, P.O. Living together in space: The design and operation of the life support systems on! the Inte vol-1 NASA Technical Manual TM-1998–206956 NASA Administration. Marshall Space Flight Center. Huntsville AI. USA (1998)

    Google Scholar 

  268. Wiesel, T.: Postnatal development of the visual cortex and influence of environment. Nature 299, 583–591 (1982)

    Article  ADS  Google Scholar 

  269. Williams, F.A.: Materials and fluids under low gravity. In: Proceedings of the IXth European Symposium on Gravity Dependent Phenomena in Physical Sciences. Springer, Berlin (1995)

    Google Scholar 

  270. Wilson, J.W.: Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS ONE 3, r3923 (2008). doi:10.1371/journal.pone.0003923

    Article  ADS  Google Scholar 

  271. Wurtman, R.J., Wurtman, J.J.: Carbohydrates and depression. Sci. Am. 260, 68–75 (1989)

    Article  ADS  Google Scholar 

  272. Yates, B.J., Kerman, I.A.: Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res. Rev. 28, 73–82 (1998)

    Article  Google Scholar 

  273. Young, S.N., Smith, S.E., Pihl, R.O., et al.: Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87, 173–177 (1985)

    Article  Google Scholar 

  274. Zappoli, B., Bailly, D., Garrabos, Y., Le Neindre, B., Guenoun, P., Beysens, D.: Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys. Rev. A 41, 2264–2267, (1990); Onuki, A., Hao, H., Ferrell, R.A.: Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point. Phys. Rev. A 41, 2256 (1990)

    Google Scholar 

  275. Zhang, Z., Lambert, Ch, Servotte, S., et al.: Effects of constitutively active GTPases on fibroblast behavior. Cell. Mol. Life Sci. 63, 82–91 (2006)

    Article  Google Scholar 

  276. Dachev T.P.: Characterization of the near Earth radiation environment by Liulin type spectrometers. Advances in Space Research. 44, 1441–1449 (2009).

    Article  ADS  Google Scholar 

  277. Rabbow, E. et al.: EXPOSE, an Astrobiological Exposure Facility on the International Space Station – from Proposal to Flight. Origins of Life and Evolution of the Biosphere, 39(6), 581–598 (2009)

    Article  ADS  Google Scholar 

  278. Horneck, G.: Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutation Research 430, 221–228 (1999)

    Article  Google Scholar 

  279. Horn, E., Gabriel, M.: Gravity-related critical periods in vestibular and tail development in Xenopus laevis. J. Exp. Zool., in press (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aceto, J. et al. (2011). Areas of Research. In: Beysens, D., Carotenuto, L., van Loon, J., Zell, M. (eds) Laboratory Science with Space Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21144-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21144-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21143-0

  • Online ISBN: 978-3-642-21144-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics