Skip to main content

Landscape Dynamics in the Southern Aralkum: Using MODIS Time Series for Land Cover Change Analysis

  • Chapter
  • First Online:
Aralkum - a Man-Made Desert

Part of the book series: Ecological Studies ((ECOLSTUD,volume 218))

Abstract

This study presents a method for detecting changes in land and soil cover of the southern Aralkum using high-temporal-resolution time series satellite data. The results demonstrate that the MODIS time series classification is a valuable tool to produce accurate landscape classification, landscape change maps and statistics for large areas as the Aralkum. A significant proportion of the emerged soil remained devoid of dense vegetation and became a salt desert. Only a small part of the salt desert in the study area, near the former Amu Darya’s mouth, was converted to shrubland and reeds between 2000 and 2008. Monitoring land cover condition and analysing land cover change in the Aralkum is of great importance, since the ecological situation is still very dynamic and large parts of the landscape in the Aralkum are unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breckle S-W, Wucherer W, Agachanjanz O, Geldyev B (2001) The Aral Sea crisis region. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin, pp 27–37

    Chapter  Google Scholar 

  • Colditz RR, Conrad C, Wehrmann T, Schmidt M, Dech S (2008) TiSeG: flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans Geosci Remote Sens 46(10):3296–3308

    Article  Google Scholar 

  • Conrad C (2006) Fernerkundungsbasierte Modellierung und hydrologische Messungen zur Analyse und Bewertung der landwirtschaftlichen Wassernutzung in der Region Khorezm (Usbekistan). Dissertation thesis, University of Würzburg, Würzburg

    Google Scholar 

  • DeFries RS, Hansen MC, Townshend JRG (1995) Global discrimination of land cover types from metrics derived from AVHRR pathfinder data. Remote Sens Environ 54:209–222

    Article  Google Scholar 

  • DeFries RS, Hansen MC, Townshend JRG, Sohlberg R (1998) Global land cover classification at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int J Remote Sens 19(16):3141–3168

    Article  Google Scholar 

  • DiGregorio A (2005) Land cover classification system – classification concepts and user manual for Software version 2, FAO Environment and Natural Resources Service Series, No. 8, Rome

    Google Scholar 

  • Dukhovny VA, Navratil P, Rusiev I, Stulina G, Roshenko YE (eds) (2008) Comprehensive remote sensing and ground based studies of the dried Aral Sea bed. Scientific-Information Center ICWC, Tashkent

    Google Scholar 

  • Friedl MA, Brodley CE, Strahler AH (1999) Maximising land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans Geosci Remote Sens 37(2):969–977

    Article  Google Scholar 

  • Giese E (1997) Die ökologische Krise der Aralseeregion. Geogr Rundsch 49:293–299

    Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21(6–7):1331–1364

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Loh W, Shih Y (1997) Split selection methods for classification trees. Stat Sin 7:815–840

    Google Scholar 

  • Metternich GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Micklin PP (2007) The Aral Sea disaster. Annu Review Earth Planet Sci 35:47–72

    Article  CAS  Google Scholar 

  • Micklin PP (2008) Using satellite remote sensing to study and monitor the Aral Sea and adjacent zone. In: Qi J, Evered KT (eds) Environmental problems of Central Asia and their economical, social and security impacts. Springer, Dordrecht, pp 31–49

    Chapter  Google Scholar 

  • Rafikov AA (1999) Desertification in the Aral Sea region. In: Glantz MH (ed) Creeping environmental problems and sustainable development in the Aral Sea Basin. Cambridge University Press, Cambridge

    Google Scholar 

  • Razakov RM, Kosnazarov KA (1996) Dust and salt transfer from the exposed bed of the Aral Sea and measures to decrease its environmental impact. In: Micklin PP, Williams WD (eds) The Aral Sea Basin. NATO ASI Series, Vol. 12. Springer Verlag, Berlin

    Google Scholar 

  • Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J (2002) The MODIS land product quality assessment approach. Remote Sens Environ 83(1–2):62–76

    Article  Google Scholar 

  • Singer A, Zobeck T, Poberrezky L, Argaman E (2003) The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J Arid Environ 54:705–728

    Article  Google Scholar 

  • Sivanpillai R, Latchininsky V (2007) Mapping locust habitats in the Amudarya river delta, Uzbekistan with multi-temporal MODIS imagery. Environ Manage 39:876–886

    Article  PubMed  Google Scholar 

  • Vermote EF, el Saleous NZ, Justice CO, Kaufman YJ, Privette JL, Remer L, Roger JC, Tanre D (1997) Atmospheric correction of visible to middle-infrared EOS – MODIS data over land surfaces: background, operational algorithm and validation. J Geophys Res 102(D14):17131–17141

    Article  Google Scholar 

  • Wucherer W, Breckle S-W (2001) Vegetation dynamics on the dry sea floor of the Aral Sea. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin, pp 52–69

    Chapter  Google Scholar 

  • Zhan X, Sohlberg RA, Townshend JRG, DiMiceli C, Carroll ML, Eastman JC, Hansen MC, DeFries RS (2002) Detection of land cover changes using MODIS 250 m data. Remote Sens Environ 83:336–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löw, F., Navratil, P., Bubenzer, O. (2012). Landscape Dynamics in the Southern Aralkum: Using MODIS Time Series for Land Cover Change Analysis. In: Breckle, SW., Wucherer, W., Dimeyeva, L., Ogar, N. (eds) Aralkum - a Man-Made Desert. Ecological Studies, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21117-1_6

Download citation

Publish with us

Policies and ethics