Skip to main content

Probe the Potts States in the Minicolumn Dynamics

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6675))

Included in the following conference series:

  • 1844 Accesses

Abstract

Minicolumn has been widely accepted not only as the basic structural element of the cortex anatomically, but also as the fundamental functional unit physiologically. And, it is believed by many theorists that the minicolumn may function as a Potts spine, only takes on finite discrete states. But its feasibility is unclear. In order to provide a biophysical evidence for the Potts assumption, a model is proposed to analyze the dynamics of minicolumn. With simulation, we found that Potts states may originate from the temporary high synchronization of neuronal subsets. Furthermore, after analyzing the average number of synchronous spiking neurons, we propose a novel and important assumption that, intrinsically-busting neurons may play a critical role in stabilizing the Potts states.

This work is supported by National Natural Science Foundation of China (61071180).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mountcastle, V.B.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957)

    Google Scholar 

  2. Treves, A.: Frontal latching networks: A possible neural basis for infinite recursion. Cognitive Neuropsychology 22(3-4), 276–291 (2005)

    Article  Google Scholar 

  3. Lansner, A.: Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations, Rev. Trends in Neuroscience 32(3), 178–186 (2009)

    Article  MathSciNet  Google Scholar 

  4. Gupta, A., Wang, Y., Markram, H.: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

    Article  Google Scholar 

  5. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Siblberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nature Review Neuroscience (5), 793–807 (2004)

    Google Scholar 

  6. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  7. DeFelipe, J., Farinas, I.: The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992)

    Article  Google Scholar 

  8. Peters, A., Sethares, C.: Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J. Comp. Neurol. 365, 232–255 (1996)

    Article  Google Scholar 

  9. Peters, A.: The morphology of minicolumns. In: Blatt, G.J. (ed.) The Neurochemical Basis of Austim, pp. 45–68. Springer Science & Business media, LLC (2010)

    Chapter  Google Scholar 

  10. Buxhoeveden, D.P., Casanova, M.F.: The microcolumn hypothesis in neuroscience. Brain 125, 935–951 (2002)

    Article  Google Scholar 

  11. McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A.: Comparative electrophysiology of pyramidal and sparsely spiny stellateneurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985)

    Google Scholar 

  12. Thomson, A.M., West, D.C., Wang, Y., Bannister, A.P.: Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labeling in vitro. Cerebral Cortex 12(9), 936–953 (2002)

    Article  Google Scholar 

  13. Häusler, S., Maass, W.: Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. J. Physiology 103, 73–87 (2009)

    Google Scholar 

  14. Richardson, K.A., Fanselow, E.E., Connors, B.W.: Neocortical Anatomy and Physiology. In: Engel, J., Pedley, T.A. (eds.) Epilepsy: A Comprehensive Textbook, 2nd edn., pp. 323–336. Lippincott-Williams & Wilkins (2008)

    Google Scholar 

  15. Callaway, E.M.: Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks 17(5-6), 625–632 (2004)

    Article  MATH  Google Scholar 

  16. Binzegger, T., Douglas, R.J., Martin, K.A.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24(39), 8441–8453 (2004)

    Article  Google Scholar 

  17. Treves, A.: Computational constraints that have favoured the lamination of sensory cortex. J. Comput. Neurosci. 14, 271–282 (2003)

    Article  Google Scholar 

  18. Jablonski, P., Poe, G.R., Zochowski, M.: Structural network heterogeneities and network dynamics: A possible dynamical mechanism for hippocampal memory reactivation. Phys. Rev. E 75(011912), 1–7 (2007)

    Google Scholar 

  19. Favorov, O., Kelly, D.G.: Minicolumnar organization within somatosensory cortical segregates:II. Emergent Functional Properties. Cerebral Cortex 4, 428–442 (1994)

    Article  Google Scholar 

  20. Kanter, I.: Potts-glass models of neural networks. Phys. Rev. A 37, 2739–2742 (1988)

    Article  MathSciNet  Google Scholar 

  21. Golomb, D.: Slow excitation supports propagation of slow pulses in networks of excitatory and inhibitory populations. Phys. Rev. E 65(061911), 1–16 (2002)

    MathSciNet  Google Scholar 

  22. French, D.A., Gruenstein, E.I.: An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons. J. Comput. Neurosci. 21, 227–241 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, S., Yao, H. (2011). Probe the Potts States in the Minicolumn Dynamics. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21105-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21105-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21104-1

  • Online ISBN: 978-3-642-21105-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics