Skip to main content

Abstract

Cassava (Manihot esculenta Crantz) is one of the major starchy staple root crops for over 800 million people living throughout the tropics including Africa. This crop is considered as one of the most important staples of sub-Saharan Africa accounting for the highest cassava harvest worldwide, followed by Asia and South America, and the demand for its cultivation in the next 20 years is expected to increase due to population growth. The main center of diversity of Manihot species is Brazil. Wild populations of M. esculenta ssp. flabellifolia (Euphorbiaceae) are considered to be the most probable progenitor of domesticated cassava. Most Manihot species are perennial and vary in growth pattern from nearly acaulescent subshrubs to small trees. Like in most crops, wild Manihot species are great resources for important traits such as robustness and resistance/tolerance to diseases, pests and tolerance to frost, and other root quality traits. These wild species constitute valuable genetic reservoirs harboring genes that show novel characters and aid in introgression of useful traits into the cultivated Manihot species for increased yield and tolerance for biotic and abiotic stresses. High protein combined with low hydrocyanic acid content has been achieved by screening of the wild relatives of cassava. Studies on the wild Manihot species in their natural habitats revealed resistance to drought and excessive soil aluminum toxicity as well as adaptation to low temperature. Hybrids derived by crossing with such wild species showed high root productivity and resistance to stem borers. Apomixis was also discovered in the wild species and later transferred successfully to the cultivated species. The use of such improved cassava varieties resulted in 49% increase over the average yield. Conservation of cassava genetic resources and protection from genetic erosion provides an avenue for its genetic improvement and sustainable production over many years to come. Based on the research findings available so far, it is often difficult to separate cultivated cassava from wild Manihot species, therefore, this review focuses on all the information available till date on Manihot species, including cultivated cassava.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akano A, Barrera E, Dixon AGO, Mba C, Fregene M (2002) Molecular genetic mapping of resistance to the African cassava mosaic disease. Theor Appl Genet 105:521–525

    PubMed  CAS  Google Scholar 

  • Allem AC (1984) A taxonomic revision of Manihot section Quinquelobae. PhD Thesis, University of Reading, Reading, UK

    Google Scholar 

  • Allem AC (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41:133–150

    Google Scholar 

  • Allem AC (1999) The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica 107:123–133

    Google Scholar 

  • Allem AC (2002) The origin and taxonomy of cassava. In: Hillocks RJ, Thresh JM, Belloti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 1–16

    Google Scholar 

  • Allem AC, Mendes RA, Salomão AN, Burle ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz ssp. esculenta, Euphorbiaceae). Euphytica 120:127–132

    CAS  Google Scholar 

  • Amma CSE, Sheela MN, Pillai PKT (1995) Combining ability heterosis and gene action for three major quality traits in cassava. J Root Crops 21(1):24–29

    Google Scholar 

  • Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto S, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539

    PubMed  Google Scholar 

  • Angel F, Arias D, Tohme J, Iglesias C, Roca W (1993) Towards the construction of a molecular map of cassava (Manihot esculenta Crantz): comparison of restriction enzymes and probe sources in detecting RFLPs. J Biotechnol 31:103–113

    PubMed  CAS  Google Scholar 

  • Awoleye F, Van Duren M, Dolezel J, Novak FJ (1994) Nuclear DNA content and in vitro induced somatic polyploidization (Manihot esculenta Crantz) cassava breeding. Euphytica 76:195–202

    CAS  Google Scholar 

  • Bai KV (1987) Recent advances in cassava genetics and cytogenetics. In: Hershey CH (ed) Cassava breeding: a multidisciplinary review. Proceedings of a workshop held in the Philippines, 4–7 Mar 1985, pp 35–49

    Google Scholar 

  • Beeching JR, Marmey P, Gavalda MC, Noirot M, Haysom HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava germplasm using molecular markers. Ann Bot 72:515–520

    CAS  Google Scholar 

  • Bonierbale M, Roa AC, Maya MM, Duque MC, Tohme J (1997) Assessment of genetic diversity in Manihot species with AFLPs. Afr J Root Tuber Crops 2:139

    Google Scholar 

  • Botstein D, White RL, Skolnick MH, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Brush SB (1999) Genetic erosion of crop populations in centers of diversity: a revision. In: Proceedings of the Technical Meeting on the Methodology of FAO, Views on the PGR, Research Institute of Crop Production, Prague, Czech Republic, pp. 34–44

    Google Scholar 

  • Bryne M, Murrell JC, Owen JV, Kriedemann A, Williams GR, Moran GF (1997) Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 94:674–681

    Google Scholar 

  • Bunyeth H, Preston TR (2006) Growth performance and parasite infestation of goats given cassava leaf silage, or sun-dried cassava leaves, as supplement to grazing in lowland and upland regions of Cambodia. Livestock Research for Rural Development, vol 18, Art No 28. http://www.lrrd.org/lrrd18/2/buny18028.htm

  • Carvalho LJCB, Schaal BA (2001) Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica 120:133–142

    CAS  Google Scholar 

  • Ceballos H, Iglesias CA, Perez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    PubMed  CAS  Google Scholar 

  • Charoenrath S, Tongsri W, Watananon A, Limsila T, Srinakarakut R (2006) A new Thai cassava cultivar with improved starch and ethanol yields. In: Ortiz R, Nassar NMA (eds) Cassava improvement to enhance livelihoods in Sub-Saharan Africa and Northeastern Brazil. First international meeting on cassava breeding, biotechnology and ecology, Brasilia, Brazil, 11–15 Nov 2006, Univ de Brasilia, Brasilia, Brazil

    Google Scholar 

  • Chavarriaga-Aguirre P, Maya M, Tohme J, Duque MC, Iglesias C, Bonierbale MW, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273

    CAS  Google Scholar 

  • CIAT (2003) Annual report IP3: improved cassava for developing world. CIAT, Cali, Colombia, pp 8.1–8.3

    Google Scholar 

  • Cortés DF, Reilly K, Beeching JR, Tohme J (2002) Mapping genes implicated in post-harvest physiological deterioration in cassava (Manihot esculenta Crantz). Euphytica 128:47–53

    Google Scholar 

  • de Wet JMJ (1980) Origin of polyploids. In: Lewis W (ed) Polyploidy: biological relevance. Plenum, New York, USA, pp 3–15

    Google Scholar 

  • Dobzhansky T (1973) Genética do processo evolutivo. Tradução de Celso Abbade Mourão, São Paulo, Polígono Ed, p 453

    Google Scholar 

  • Duputie A, David P, Debain C, McKey D (2007) Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 16:3025–3028

    PubMed  Google Scholar 

  • Ekanayake I, Osiru DSO, Porto MCM (1997) Morphology of cassava. IITA Res Guide Ser 61:27

    Google Scholar 

  • Emperaire L, Pinton F, Second G (1998) Une gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nature, Science et Société 6(2):27–42

    Google Scholar 

  • Escobar RH, Mafla G, Roca WM (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16:474–478

    CAS  Google Scholar 

  • FAO (2008) FAOSTAT database. http://faostat.fao.org

  • FAO (2009) Production Yearbook. Food and Agricultural Organisation, Rome, Italy, pp. 251

    Google Scholar 

  • FAO (2010) Africa’s food security: learning from success. FAO Regional Office for Africa. pp 13

    Google Scholar 

  • Fregene MA, Vargas J, Ikea J, Angel F, Tohme J, Asiedu RA, Akoroda MO, Roca WM (1994) Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theor Appl Genet 89:719–727

    CAS  Google Scholar 

  • Fregene M, Angel F, Gómez R, Rodríguez F, Roca W, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    CAS  Google Scholar 

  • Fregene M, Okogbenin E, Mba C, Angel F, Suarez MC, Guitiérez J, Chavarriaga P, Roca W, Bonierbale M, Tohme J (2001) Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica 120:159–165

    CAS  Google Scholar 

  • Fregene M, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Dixon AGO, Dean R, Kresovich S (2003) Simple sequence repeat (SSR) diversity of cassava (Manihot esculenta Crantz) landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093

    PubMed  CAS  Google Scholar 

  • Frison EA, Feliu E (1991) FAO/IBPGR technical guidelines for the safe movement of cassava germplasm. Food and Agriculture Organization of the United Nations (FAO) and International Beareau for Plant Genetic Resources (IBPGR), Rome, Italy

    Google Scholar 

  • Fukuda WM, Guevara CL (1998) Descriptores morfologicos e agronômicos para a caracterização de mandioca (Manihot esculenta Crantz). Cruz das Almas, EMBRAPA-CNPMF, Bahia, Brazil, 38 p

    Google Scholar 

  • Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in northeastern Brazil. Working document number 99, CNPMF, Cruz da Almas, Bahia, Brazil, 42 p

    Google Scholar 

  • Gedil M, Sartie A (2010) Perspectives of molecular breeding of Africa’s main staple food crops – cassava and yam. Asp Appl Biol 96:123–135

    Google Scholar 

  • Gomez R, Angel F, Bonierbale M, Rodriguez F, Tohme J, Roca W (1996) Inheritance of random amplified polymorphic DNA markers in cassava (Manihot esculenta Crantz). Genome 39(5):1039–1043

    PubMed  CAS  Google Scholar 

  • Graner EA (1942) Genetica de Manihot. I. Heriteriadade da formafolha e da coloracao da pelicula externa das raices en Manihotutilissima Pohl. Bragantia 2:13–22

    Google Scholar 

  • Guarino L (1995) Assessing the threat of genetic erosion. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CABI, Wallingford, UK, pp 67–74

    Google Scholar 

  • Gulick P, Hershey C, Esquinas-Alcazar J (1983) Genetic resources of cassava and wild relatives. International Board for Plant Genetic Resources, Rome, Italy

    Google Scholar 

  • Hahn SK (1989) An overview of African traditional cassava processing and utilisation. Outlook Agric 18:110–118

    Google Scholar 

  • Hahn SK (1993) Méthodes traditionnelles de transformation et d’utilisation du manioc en Afrique. Guide de recherche de l’IITA (41):45

    Google Scholar 

  • Hahn SK, Terry ER, Leuschner K (1980) Cassava breeding for resistance to cassava mosaic disease. Euphytica 29:673–683

    Google Scholar 

  • Hahn SK, Isoba JCG, Ikotun T (1989) Resistance breeding in root and tuber crops at International Institute of Tropical Agriculture (IITA). Crop Prot 8:147–168

    Google Scholar 

  • Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79:433–439

    Google Scholar 

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 10(5):1164–1170

    Google Scholar 

  • Harlan J (1961) Geographic origin of plants useful to agriculture. Am Assoc Adv Sci 66:3–9

    Google Scholar 

  • Harshey C, Ocampo C (1989) New marker genes found in cassava. Cassava Newsl 13:1–5

    Google Scholar 

  • Iglesias CA (1994) Interfase entre los programas de mejoramientos, los campos de los agricultores y los mervados de la yucca en Latinoamerica. Documento de Trabajo, 138, CIAT, Cali, Columbia

    Google Scholar 

  • IITA (2000b) Annual reports. IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria

    Google Scholar 

  • IITA (2000c) Enhancement of income-generation potential through the development and transfer of improved cassava genetic material and adoption of post-harvest technologies in Africa. A report by IITA to the International Fund for Agricultural Development (IFAD). IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria, 200 p

    Google Scholar 

  • IITA (2000d) The contribution of IITA – improved cassava to food security in sub-Saharan Africa: an impact study. IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria, 10 p

    Google Scholar 

  • Jeffreys A, Wilson JV, Thein L (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    PubMed  CAS  Google Scholar 

  • Jennings DL (1959) Manihot melanobasis Muell. Agr. – a useful parent for cassava breeding. Euphytica 8:157–162

    CAS  Google Scholar 

  • Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava and the effect of interspecific crossing on fertility. Euphytica 12:69–76

    Google Scholar 

  • Jennings DL, Hershey CH (1985) Cassava breeding: a decade of progress from international programmes. In: Russel GE (ed) Progress in plant breeding 1. Butterworths, London, UK, pp 89–116

    Google Scholar 

  • Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 149–166

    Google Scholar 

  • Jos JS, Nair SG (1979) Pachytene pairing in relation to pollen fertility in five cultivars of cassava. Cytologia 44:813–820

    Google Scholar 

  • Jos JS, Bai KV, Sreekumari MT (1987) Triploidy as a tool in cassava improvement. In: Proceedings of national symposium on production and utilization of tropical tuber crops, CTCRI, Trivandrum, India, 27–29 Nov 1987, pp 7–13

    Google Scholar 

  • Kawano K (1978) Genetic improvement of cassava (Manihot esculenta Crantz) for productivity. In: Tropical agriculture research, Series 11. Ministry of Agriculture and Forestry, Tokyo, Japan, p 21

    Google Scholar 

  • Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335

    Google Scholar 

  • Krishnan R, Magoon ML, Bai KV (1970) The pachytene karyotype of Manihot glaziovii. Genet Iber 22:177–191

    Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids, 17th edn. CABI, Wallingford, UK

    Google Scholar 

  • Lefevre F, Charrier A (1993a) Heredity of seventeen isozyme loci in cassava (Manihot esculenta Crantz). Euphytica 66:171–178

    Google Scholar 

  • Lefevre F, Charrier A (1993b) Isozyme diversity within African Manihot germplasm. Euphytica 66:73–80

    Google Scholar 

  • Léotard G, McKey D (2004) Phylogeography and origin of domestication of cassava: insights from G3pdh sequence data from cassava and wild relatives in the Guianas. Poster presented at 6th international science meet of the cassava biotechnology network, CIAT, Cali, Colombia, 8–14 Mar 2004

    Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:736–740

    PubMed  CAS  Google Scholar 

  • Litt M, Lutty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  CAS  Google Scholar 

  • Lokko Y, Dixon AGO, Offei SK, Danquah E (2003) Complementarity of genes for resistance to the cassava mosaic disease. In: Proceedings of 5th African crop science conference, Lagos, Nigeria, 21–26 Oct 2001. IITA, Ibadan, Nigeria, vol 5, pp 29–33

    Google Scholar 

  • Lokko Y, Dixon A, Offei SK, Danquah EY (2004) New directions for a diverse planet. In: Proceedings of 4th international crop science congress, Brisbane, Australia, 26 Sept – 01 Oct 2004

    Google Scholar 

  • Lokko Y, Anderson JV, Rudd SA, Raji AA, Horvath DP, Mikel MA, Kim RW, Liu L, Hernandez AG, Dixon AG, Ingelbrecht I (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    PubMed  CAS  Google Scholar 

  • Magoon ML, Krishnan R, Vijaybai K (1969) Morphology of pachytene chromosomes and meiosis in Manihot esculanta Crantz. Cytologia 34:612–618

    Google Scholar 

  • Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    CAS  Google Scholar 

  • Mendiburu AO, Peloquin SJ (1977) The significance of 2n gametes in potato breeding. Theor Appl Genet 49:53–61

    Google Scholar 

  • Mok DWK, Peloquin SS (1975) The inheritance of three mechanisms of diploandroid (2n pollen) formation in diploid potatoes. Heredity 35:295–302

    Google Scholar 

  • Nassar NMA (1978a) Conservation of the genetic resources of cassava (Manihot esculenta Crantz). Determination of wild species localities with emphasis on probable origin. Econ Bot 32:311–320

    Google Scholar 

  • Nassar NMA (1978b) Some further species of Manihot with potential value to cassava breeding. Can J Plant Sci 58:915–916

    Google Scholar 

  • Nassar NMA (1978c) Genetic resources of cassava: chromosome behavior in some Manihot species. Indian J Genet 38:135–137

    Google Scholar 

  • Nassar NMA (1978d) Microcenters of wild cassava Manihot spp. diversity in Central Brazil. Turrialba 28(4):543–547

    Google Scholar 

  • Nassar NMA (1980) The need for germplasm conservation in wild cassava. Indian J Genet 39(3):465–470

    Google Scholar 

  • Nassar NMA (1985) Manihot neusana Nassar: a new species native to Paraná, Brazil. Can J Plant Sci 65:1097–1100

    Google Scholar 

  • Nassar NMA (1989) Broadening the genetic base of cassava, Manihot esculenta Crantz, by interspecific hybridization. Can J Plant Sci 69:1071–1073

    Google Scholar 

  • Nassar NMA (1991) Production of triploid cassava, Manihot esculenta Crantz, by hybrid diploid gametes. Field Crops Res 13:173–182

    Google Scholar 

  • Nassar NMA (1992) Cassava in South America: a plant breeder view. Ciên Cult (J Braz Assoc Adv Sci) 44:25–27

    Google Scholar 

  • Nassar NMA (1994) Development and selection for apomixis in cassava, Manihot esculenta Crantz. Can J Plant Sci 74:857–858

    Google Scholar 

  • Nassar NMA (1997) Development of cassava interspecific hybrids for savanna conditions. J Root Crops 22:9–17

    Google Scholar 

  • Nassar NMA (1999) Cassava, Manihot esculenta Crantz genetic resources: their collection, evaluation and manipulation. Adv Agron 69:179–230

    Google Scholar 

  • Nassar NMA (2000) Wild cassava, Manihot spp.: biology and potentialities for genetic improvement. Genet Mol Biol 23(1):201–212

    Google Scholar 

  • Nassar NMA (2001) The nature of apomixis in cassava (Manihot esculenta Crantz). Hereditas 134:185–187

    PubMed  CAS  Google Scholar 

  • Nassar NMA (2003) Cassava, Manihot esculenta Crantz and wild relatives: their relationship and evolution. Genet Resour Crop Evol 48:429–436

    Google Scholar 

  • Nassar MA, Cardenas F (1985) Collecting wild cassava in northern Mexico. FAO/IBPGR Plant Genet Resour Newsl 65:29–30

    Google Scholar 

  • Nassar NMA, Collevatti RG (2005) Microsatellite markers confirm high apomixis level in cassava inbred lines. Hereditas 142:1–5

    Google Scholar 

  • Nassar NMA, Dorea G (1982) Protein contents of cassava cultivars and its hybrid with Manihot species. Turrialba 32(4):429–432

    CAS  Google Scholar 

  • Nassar NMA, Freitas M (1997) Prospects of polyploidizing cassava, Manihot esculenta Crantz, by unreduced microspores. Plant Breed 116:195–197

    Google Scholar 

  • Nassar NMA, Grattapaglia D (1986) Variabiliade de clones de mandioca em relação a fertilidade e aspectos morfológicos. Turrialba 36(4):555–559

    Google Scholar 

  • Nassar NMA, Ortiz R (2007) Cassava improvement: challenges and impact. J Agric Sci 145:163–171

    Google Scholar 

  • Nassar NMA, Santos R (2002) Does selection improve apomixis in cassava? J Root Crops 25:1–3

    Google Scholar 

  • Nassar NMA, Nassar HNM, Vieira C, Saraiva SL (1995) Cytogenetic behavior of interspecific hybrids of cassava and M. neusansa Nassar. Can J Plant Sci 75:675–678

    Google Scholar 

  • Nassar NMA, Nassar HNM, Carvalho CG, Vieira C (1996) Induction of a productive aneuploid in cassava, Manihot esculenta Crantz. Braz J Genet 19:123–125

    Google Scholar 

  • Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) Molecular and embryonic evidence of apomixis in cassava interspecific hybrids (Manihot esculenta Crantz.). Euphytica 102:9–13

    CAS  Google Scholar 

  • Ng SYC, Ng NQ (1997) Cassava in vitro germplasm management at the International Institute of Tropical Agriculture. Afr J Root Crops 2(1–2):232–233

    Google Scholar 

  • Ng NQ, Ng SYC (2002) Genetic resources and conservation. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 167–178

    Google Scholar 

  • Ng SYC, Mantell SH, Ng NQ (1999) Biotechnology in germplasm management of cassava and yams. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 179–202

    Google Scholar 

  • Nguyen TLT, Gheewala SH (2008) Life cycle assessment of fuel ethanol from cassava in Thailand. Int J Life Cycle Assess 13:301–311

    CAS  Google Scholar 

  • Nichols RFW (1947) Breeding cassava for virus resistance. E Afr Agric J 12:184–194

    Google Scholar 

  • Nigel T, Paul C, Krit R, Dimuth S, Peng Z (2005) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688

    Google Scholar 

  • Ocampo C, Hershey C, Iglesias C, Iwanaga M (1992) Esterase isozyme fingerprinting of the cassava germplasm collection held at CIAT. In: Roca W, Thro AM (eds) Proceedings of 1st international science meeting of the cassava biotechnology network, CIAT, Cali, Columbia, pp 81–89

    Google Scholar 

  • Ocampo C, Angel F, JimCnez M, Jaramillo G, Hershey C, Granados E, Iglesias C (1995) DNA fingerprinting to confirm possible genetic duplicates in cassava germplasm. The Cassava Biotechnology Network. In: Proceedings of 2nd international science meeting, Bogor, Indonesia, 22–26 Aug 1994, CIAT, Cali, Columbia, pp 145–147

    Google Scholar 

  • Ojulong H, Labuschagne MT, Herselman L, Fregene M (2008) Introgression of genes for dry matter content from wild cassava species. Euphytica 164:163–172

    Google Scholar 

  • Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440

    CAS  Google Scholar 

  • Olsen KM (2004) SNPs, SSRs and inferences on cassava’s origin. Plant Mol Biol 56:517–526

    PubMed  CAS  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    PubMed  CAS  Google Scholar 

  • Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88:131–142

    PubMed  Google Scholar 

  • Otim-Nape GW, Bua A, Baguma Y (1994) Accelerating the transfer of improved production technologies controlling African cassava mosaic virus disease epidemics in Uganda. Afr Crop Sci J 2:479–495

    Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crop and forest trees). In: Proceedings of the workshop on. The role of Biotechnology, Turin, Italy, pp. 43–54

    Google Scholar 

  • Pickersgill B (1998) Crop introductions and the development of secondary areas of diversity. In: Prendergast HD (ed) Plants for food and medicine. Royal Botanical Gradens, Kew, UK, pp 93–105

    Google Scholar 

  • Pillai SV, Nair RR, Sumarani GO, Ravi V (2002) Germplasm management in Cassava with special emphasis on core collection. In: International conference on vegetables, Bangalore, India, 11–14 Nov 2002

    Google Scholar 

  • Pillay M, Kenny ST (1996) Random amplified polymorphic DNA markers in hop, Humulus lupulus: level of genetic variability and segregation in F1 progeny. Theor Appl Genet 92:334–339

    CAS  Google Scholar 

  • Raemakers CJJM, Sofiari E, Taylor N, Henshaw GG, Jacobsen E, Visser RGF (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol Breed 2:339–349

    CAS  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1997) Micropropagation of Manihot esculenta Crantz (cassava). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 39. Springer, Berlin, Germany, pp 77–103

    Google Scholar 

  • Rajendran PG (1989) Combining ability in cassava. J Root Crops 15(1):15–18

    Google Scholar 

  • Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9(1):118

    PubMed  Google Scholar 

  • Ramirez H, Hussain A, Roca WM, Bushuk W (1987) Isozyme electrophoregrams of 16 enzymes in five tissues of cassava (Manihot esculenta Cruntz). Euphytica 36:39–48

    CAS  Google Scholar 

  • Ravindran V (1993) Cassava leaves as animal feed: potential and limitations. J Food Sci Agric 6:141–150

    Google Scholar 

  • Reginaldo C, Marcelo G (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136(2):159–168

    Google Scholar 

  • Reed B, Dumet D, Denoma JM, Benson EE (2001) Validation of cryopreservation

    Google Scholar 

  • Rickard JE (1985) Physiological deterioration of cassava roots. J Food Sci Agric 36:167–176

    Google Scholar 

  • Roa AC, Maya MM, Duque MC, Thome J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750

    CAS  Google Scholar 

  • Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87(11):1647–1655

    PubMed  CAS  Google Scholar 

  • Rogers DJ (1965) Some botanical and ethnological considerations of Manihot esculenta. Econ Bot 19:369–377

    Google Scholar 

  • Rogers DJ, Appan C (1973) Manihot, Manihotoides, Euphorbiaceae. Flora Neotropica. Hafner, New York, USA

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    PubMed  CAS  Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66

    PubMed  Google Scholar 

  • Salick J, Cellinese N, Knapp S (1997) Indigenous diversity of cassava: generation, maintenance, use and loss among the Amuesha, Peruvian upper Amazon. Econ Bot 51:6–19

    Google Scholar 

  • Sánchez G, Restrepo S, Duque MC, Fregene M, Bonierbale M, Verdier V (1999) AFLP assessment of genetic variability in cassava accessions (Manihot esculenta) resistant and susceptible to the cassava bacterial blight (CBB). Genome 42:163–172

    PubMed  Google Scholar 

  • Sauer CO (1952) Agricultural origins and dispersals. The American Geographical Society, New York, USA

    Google Scholar 

  • Sauer JD (1993) Historical Geography of Crop Plants. CRC, Boca Raton, Florida, USA, pp. 22

    Google Scholar 

  • Schaal BA, Olson PD, Prinzie TP, Carvalho LJCB, Tonukari J, Hayworth DA (1994) Phylogenetic analysis of the genus Manihot based on molecular markers. In: Roca WM, Thro AM (eds) Proceedings of 1st science meeting of the cassava biotechnology network, Cartagena, Colombia, 25–28 Aug 1992. Working document no 123, CIAT, Cali, Colombia, pp 106–122

    Google Scholar 

  • Schaal B, Carvalho LJCB, Prinzie T, Olsen K, Hernandez M, Cabral G, Moeller D (1997) Phylogenetic relationships and genetic diversity in Manihot species. Afr J Root Tuber Crops 2:147–149

    Google Scholar 

  • Schöpke C, Franche C, Bogusz D, Chavarriaga P, Fauquet C, Beachy RN (1993) Transformation in cassava (Manihot esculenta Crantz). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering, vol 23. Springer, Berlin, Germany, pp 273–298

    Google Scholar 

  • Schöpke C, Taylor N, Crcamo R, Konan NK, Marmey P, Henshaw GG, Beachy R, Fauquet C (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14:731–735

    PubMed  Google Scholar 

  • Scott GJ, Rosegrant MK, Ringler C (2000) Global projections for root and tuber crops to the year 2020. Food Policy 25:561–597

    Google Scholar 

  • Stamp JA (1987) Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann Bot 59:451–459

    Google Scholar 

  • Stamp JA, Henshaw GG (1982) Somatic embryogenesis in cassava. Z Pflanzenphysiol 105:183–187

    Google Scholar 

  • Storey HH, Nichols RFW (1938) Studies on the mosaic diseases of cassava. Ann Appl Biol 25:790–806

    Google Scholar 

  • Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688

    PubMed  CAS  Google Scholar 

  • Tonukari NJ (2004) Cassava and the future of starch. Electron J Biotechnol 7:5–8

    Google Scholar 

  • Umanah EE, Hartman RW (1973) Chromosome numbers and karyotypes of some Manihot species. J Am Soc Hortic Sci 98:272–274

    Google Scholar 

  • Vavilov NI (1951) Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Vorsa N, Bingham ET (1979) Cytology of pollen formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol 21:526–530

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Walker G, Holmes B (1996) The Amazon: into the forest. New Sci 151:26–43

    Google Scholar 

  • Wanyera NMW, Hahn SK, Aken’Ova ME (1994) Introgression of ceara rubber (Manihot glaziovii) into cassava (Manihot esculenta): a morphological and electrophoretic evidence. In: Proceedings of 5th triennial symposium of the international society for tropical root crops – Africa branch, Kampala, Uganda, 22–28 Nov 1992, pp 125–130

    Google Scholar 

  • Watson L, Dallwitz MJ (1992) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 10 Apr 2008. http://delta-intkey.com

  • Willemen L, Scheldeman X, Cabellos VS, Salazar SR, Guarino L (2007) Spatial patterns of diversity and genetic erosion of traditional cassava (Manihot esculenta Crantz) in the Peruvian Amazon: an evaluation of socio-economic and environmental indicators. Genet Resour Crop Evol 54:1599–1612

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin, Germany

    Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single dose restriction fragments. Theor Appl Genet 83:294–300

    Google Scholar 

  • Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672

    Google Scholar 

  • Ziskaa LH, Runion GB, Tomecek MB, Prior SA, Torbet HA, Sicher RC (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503–1508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Narina, S.S., Jasti, M., Buyyarapu, R., Bhattacharjee, R. (2011). Manihot. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21102-7_8

Download citation

Publish with us

Policies and ethics