Skip to main content

Abstract

Ipomoea is one of the largest and complex genera containing over 600 species of vines and shrubs and widely distributed throughout the world. A number of species of Ipomoea are of considerable importance either as medicinal or ornamental plants. Among the species within the genus Ipomoea series Batatas, 13 are closely related to cultivated sweetpotato, although its wild ancestor is not yet identified. Many in the series are diploid (x = 15), two are tetraploid (I. tiliacea and I. tabascana), and I batatas has both tetraploid and hexaploid races. The cultivated sweetpotato appears to be the only known hexaploid in the genus. The polyploid origin of sweetpotato and its exact relationships with regard to the genomes of wild Ipomoea species are not clearly understood. Some of the wild species are known to harbor desirable genes useful for sweetpotato improvement, including resistance to sweetpotato weevil. Strategies to utilize these species will be depending upon on our understanding of their evolutionary relationships with the hexaploid sweetpotato and other strategies for introgression of beneficial genes from wild to cultivated species. However, interspecific hybrids between sweetpotato and its related species are rare, mainly because of various degrees of cross- and self-incompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin DF (1978) The Ipomoea batatas complex-I. Taxonomy. Bull Torrey Bot Club 105:114–129

    Article  Google Scholar 

  • Austin DF (1988) The taxonomy, evolution and genetic diversity of sweetpotatoes and related wild species. In: Gregory P (ed) Exploration, maintenance and utilization of sweetpotato genetic resources. International Potato Center, Lima, Peru, pp 27–60

    Google Scholar 

  • Austin DF (1991) Ipomoea littoralis (Convolvulaceae) – taxonomy, distribution and ethnobotany. Econ Bot 45:251–256

    Article  Google Scholar 

  • Austin DF, Huaman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the America. Taxon 45(1):3–38

    Article  Google Scholar 

  • Austin DF, Jarret RL, Johnson R (1993) Taxonomic affinities of Ipomoea gracilis R. Bown. Bull Torrey Bot Club 120:49–59

    Article  Google Scholar 

  • Bohac JR, Austin DF, Jones A (1993) Discovery of wild tetraploid sweetpotatoes. Econ Bot 47:193–201

    Article  Google Scholar 

  • Buteller MI, Jarret RL, La Bonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123–132

    Article  Google Scholar 

  • Cao QH, Zhang A, Li P et al (2009) Novel interspecific hybridization between sweetpotato (Ipomoea batatas (L.) Lam.) and its two diploid wild relatives. Euphytica 169:345–352

    Article  CAS  Google Scholar 

  • CIP (2009) Unleashing the potential of Sweetpotato in sub-Saharan Africa: Current challenges and way forward. Working paper 2009–1, CIP (International Potato Center), Lima, Peru

    Google Scholar 

  • Compton ME, Gary DJ, Elmstrom GW (1996) Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica 87:165–172

    Article  Google Scholar 

  • FAOSTAT (2006) Food and Agriculture Organization of the United Nations, Production statistics. http://faostat.fao.org. Accessed 10 Sep 2010

  • Freyre R, Iwananga M, Orejda G (1991) Use of Ipomoea trifida (HBK.) G. Don germplasm for sweetpotato improvement. 2. Fertility of synthetic hexaploids and triploids with 2n gametes of I. trifida, and their interspecific crossability with sweetpotato. Genome 34:209–214

    Article  Google Scholar 

  • Guo JM, Liu QC, Zhai H et al (2006) Regeneration of plants from Ipomoea cairica L. protoplasts and prodcuton of somatic hybrids between I. cairica L. and sweetpotato, I.batatas (L.) Lam. Plant Cell Tiss Org Cult 87(3):321–327

    Article  CAS  Google Scholar 

  • Hozyo Y, Kato S (1973) The plant production of wild type plants in lpomoea trifida (H.B.K.) Don. Tokyo Natl Inst Agric Sci Bull Ser D 24:35–60

    Google Scholar 

  • Huamán Z (1991) Descriptors for sweetpotato. CIP/AVRDC/IBPGR (International Board for Plant Genetic Resources), Rome, Italy

    Google Scholar 

  • Huamán Z, Zhang DP (1997) Sweetpotato in biodiversity in trust. In: Dominic F, Linda S, Paul S (eds) Conservation and use of plant genetic resources in CGIAR centres, Chap. 3. Cambridge University Press, Cambridge, UK, pp 29–38

    Google Scholar 

  • Iwanaga M (1988) Use of wild germplasm for sweetpotato breeding. In: Gregory P (ed) Exploration, maintenance, and utilization of sweetpotato genetic resources. International Potato Center, Lima, Peru, pp 199–210

    Google Scholar 

  • Iwanaga MR, Freyre R, Orjeda G (1991) Use of Ipomoea trifida (H.B.K.) G. Don germplasm for sweetpotato improvement. Genome 34:201–208

    Article  Google Scholar 

  • Jarret RL, Austin DF (1994) Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genet Resour Crop Evol 41:165–173

    Article  Google Scholar 

  • Jarret RL, Gawel N, Whittemore A (1992) Phylogenetic relationship of the sweetpotato (Ipomoea batatas (L.) Lam.). J Am Soc Hortic Sci 117:633–647

    Google Scholar 

  • Jones A (1965) Cytological observations and fertility measurements of sweetpotato (Ipomoea batatas (L.) Lam.). Proc Am Soc Hortic Sci 86:527–537

    Google Scholar 

  • Jones A (1974) Chromosome numbers in genus Ipomoea. J Hered 55:216–219

    Google Scholar 

  • Jones A, Deonier MT (1965) Interspecific crosses among Ipomoea lacunosa, I. ramoni, I. trichocarpa and I. triloba. Bot Gaz 126:226–232

    Article  Google Scholar 

  • Jones A, Dukes PD, Schalk JM (1986) Sweetpotato breeding. In: Bassett M (ed) Breeding vegetable crops. AVI, Westport, CN, USA, pp 1–35

    Google Scholar 

  • Karp A, Nelson RS, Thomas E, Bright SWJ (1982) Chromosome variation in protoplast-derived potato plants. Theor Appl Genet 63:265–272

    Article  Google Scholar 

  • Kobayashi RS, Bouwkamp JC, Sinden SL (1994) Interspecific hybrids from cross incompatible relatives of sweetpotato. Euphytica 80:159–164

    Article  Google Scholar 

  • Komaki K (2004) Breeding value of wild species closely related to sweetpotato. In: Proceedings of international workshop on production, utilization and development of sweetpotato, Korea, pp 164–172

    Google Scholar 

  • Liu QC, Wang JX, Li WJ et al (1994) Protoplast fusion and regeneration of interspecific somatic hybrid plants between sweetpotato (Ipomoea batatas (L.) Lam.) and its related species. J Agric Biotechnol 2(1):85–90

    Google Scholar 

  • Lower RL, Johnson KW (1969) Observations on sterility of induced autotetraploid watermelons. J Am Soc Hortic Sci 94:367–369

    Google Scholar 

  • Lu SY, Li TY (1992) Study on the Characterization of intra and inter-specific incompatibility of Batatas Section. Acta Agron Sin 18(3):161–168

    Google Scholar 

  • Martin FW (1970) Self- and interspecific incompatibility in the Convolvulaceae. Bot Gaz 131:139–144

    Article  Google Scholar 

  • Martin FW (1982) Analysis of the incompatibility and sterility of sweetpotato. In: Villareal RL, Griggs TD (eds) Sweetpotato. Proceedings of 1st international symposium, AVRDC, Tainan, Taiwan, pp 275–283

    Google Scholar 

  • Martin FW, Jones A (1973) The species of Ipomoea closely related to the sweetpotato. Econ Bot 26:201–215

    Article  Google Scholar 

  • McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42:116–120

    Article  Google Scholar 

  • McDonald JA, Mabry TJ (1992) Phylogenetic systematic of New World Ipomoea (Convolvulaceae) based on chloroplast DNA restriction site variation. Plant Syst Evol 180:243–259

    Article  CAS  Google Scholar 

  • Nishiyama I (1971) Evaluation and domestication of sweetpotato. Bot Mag Tokyo 84:377–387

    Google Scholar 

  • Nishiyama I (1982) Autohexaploid evolution of the sweetpotato. In: Sweetpotato. Proceedings of 1st international symposium, AVRDC Publ No 82–172, pp 263–274

    Google Scholar 

  • Nishiyama I, Teramura T (1962) Mexican wild forms of sweetpotato. Econ Bot 16:304–314

    Article  Google Scholar 

  • Nishiyama I, Miyazaki T, Sakamoto S (1975) Evolutionary autoploidy in the sweetpotato (Ipomoea batatas) and its progenitors. Euphytica 24:197–208

    Article  Google Scholar 

  • Oracion MZ, Niwa K, Shiotani I (1990) Cytological analysis of tetraploid hybrids between sweetpotato and diploid Ipomoea trifida (H.B.K.) Don. Theor Appl Genet 80:617–724

    Article  Google Scholar 

  • Orejda J, Freyre R, Iwanaga M (1990) Production of 2n pollen in diploid I. trifida, a putative wild ancestor of sweetpotato. J Hered 81:462–467

    Google Scholar 

  • Plucknett DL (1991) Forward. In: Janson RK, Raman KV (eds) Sweetpotato pest management – a global perspective. Westview, San Francisco, USA

    Google Scholar 

  • Rajapakse S, Nilmalgoda DS, Molnar M, Ballard ER, Austin FD, Bohac RJ (2004) Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on β–amylase gene sequences. Mol Phylogenet Evol 30:623–632

    Article  PubMed  CAS  Google Scholar 

  • Rao VR, Debouck T, Iwanaga M (1994) The role of international organization in root and tuber crop conservation. In: 1st Ministry of Agriculture, Forestry and Fisheries, Japan. International workshop on genetic resources – root and tuber crops, Tsukuba, MAFF, Japan, 15–17 Mar 1994, pp 7–22

    Google Scholar 

  • Rossel G, Kriegner A, Zhang DP (2000) From Latin America to Oceania: the historic dispersal of sweetpotato re-examined using AFLP. CIP Program Report 1999–2000:315–321

    Google Scholar 

  • Shiotani I (1987) Genomic structure and the gene flow in sweetpotato and related species. In: Gregory P (ed) Exploration, maintenance and utilization of sweetpotato genetic resources. Report of 1st sweetpotato planning conference, CIP, Lima, Peru, pp 61–73

    Google Scholar 

  • Shiotani I, Kawase T (1987) Synthetic hexaploids derived from wild species related to sweetpotato. Jpn J Breed 37:367–376

    Google Scholar 

  • Shiotani I, Yoshida S, Kawase T (1990) Numerical taxonomic analysis and crossability of diploid Ipomoea species related to the sweetpotato. Jpn J Breed 40:159–174

    Google Scholar 

  • Srisuwan S, Sihachakr S, Siljak-Yakovlev S (2006) The origin and evolution of sweetpotato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171:424–433

    Article  PubMed  CAS  Google Scholar 

  • Steinbauer CE (1937) Methods of scarifying sweetpotato seed. Proc Am Soc Hortic Sci 35:706–708

    Google Scholar 

  • Takagi H (1988) Sweetpotato collections in Papua New Guinea. In: Exploration, maintenance and utilization of sweetpotato genetic resources. Centro Internacional de la Papua, Lima, Peru, pp 233–246

    Google Scholar 

  • Teramura T (1979) Phylogenetic study of Ipomoea species in the section Batatas. Mem Coll Agric Kyoto Univ 114:29–48

    Google Scholar 

  • Ting YC, Kehr AE, Miller JC (1957) A cytological study of the sweetpotato plant (Ipomoea batatas (L.) Lam.) and its related species. Am Nat 91:197–203

    Article  Google Scholar 

  • Wang J, He G, Prakash CS, Liu S (1998) Analysis of genetic diversity in Chinese sweetpotato (Ipomoea batatas (L.) Lam.) germplasm using DNA fingerprinting. Plant Genet Resour Newsl 113:13–16

    PubMed  CAS  Google Scholar 

  • Wedderburn MM (1967) A study of hybridization involving the sweetpotato and related species. Euphytica 16:69–75

    Article  Google Scholar 

  • Zhang SS, Liu LF (2005) Utilization of the wild relatives in sweetpotato breeding. In: Liu QC (ed) Ma DF. Sweetpotato breeding and industrialization in China, China, pp 29–32

    Google Scholar 

  • Zhang BY, Liu QC, Zhai H et al (2002) Production of fertile interspecific somatic hybrid plants between sweetpotato and its wild relative, Ipomoea lacunosa. In: Food and Health for the Future. International conference on sweetpotato, ISHS. Acta Hortic 583:81–85

    CAS  Google Scholar 

  • Zhang DP, Rossel G, Kriegner A, Hijmans R (2004) AFLP assessment of diversity from Latin America and the Pacific region: Its implications on the dispersal of the crop. Genet Resour Crop Evol 51:115–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma Nimmakayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nimmakayala, P., Vajja, G., Reddy, U.K. (2011). Ipomoea. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21102-7_7

Download citation

Publish with us

Policies and ethics