Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 96))

Abstract

Aging wiring and structural cables in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. are among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on electric wire and cables. It can also be used for location of faults on structural cables, if they are electrically isolated. This chapter describes and compares several reflectometry methods – time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), and spread spectrum time domain reflectometry (SSTDR) – in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables, and the general equations that govern their performance are given. The impact of the fault location and size is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Withiam, J., Fishman, K., Gaus, M.: Recommended Practice for Evaluation of Metal-Tensioned Systems in Geotechnical Applications, National Research Council Transportation Research Board, National Highway Coorperative Research Report #477, National Academy Press, Wash DC (2002)

    Google Scholar 

  2. Furse, C., Smith, P., Diamond, M.: Feasibility of Reflectometry for Non-destructive Evaluation of Prestressed Concrete Anchors. IEEE Journal of Sensors 9(11), 1322–1329 (2009)

    Article  Google Scholar 

  3. Furse, C., Haupt, R.: Down to the Wire: The Hidden Hazard of Aging AirCraft Wiring. IEEE Spectrum, 35–39 (February 2001)

    Google Scholar 

  4. NASA (2000), Wiring Integrity Research (WIRE) Pilot Study A0SP-001-XB1 (August 2000)

    Google Scholar 

  5. Lloyd, R.: 64 cases of wiring problems found on shuttle fleet, CNN Reports (September 3, 1999), http://www.cnn.com/TECH/space/9909/03/shuttle.repairs/

  6. Lloyd, R.: NASA delays shuttle launch to inspect wiring, CNN Reports (August 13, 1999), http://www.cnn.com/TECH/space/9908/13/shuttle.update/

  7. Conley, T.: The relationship among component age, usage (reliability) and cost of naval aviation repairables. In: Aging Aircraft Conference 2003, New Orleans (September 2003)

    Google Scholar 

  8. NSTC Review of Federal Programs for Wire System Safety, White House Report (November 2000)

    Google Scholar 

  9. Steiner, J., Weeks, W.: Time-Domain Reflectometry for Monitoring Cable Changes: Feasibility Study, EPRI GS-6642 (February 1990)

    Google Scholar 

  10. Waddoups, B.: Analysis of reflectometry for detection of chafed aircraft wiring insulation, MS Thesis, Utah State University, Logan, Utah (2001) (all the-ses and dissertations in this paper can be obtained from, www.lib.umi.com

  11. Schmidt, M.: Use of TDR for Cable Testing, MS Thesis, Utah State University, Logan,Utah (2002)

    Google Scholar 

  12. Jani, N.: Location of Small Frays using TDR, MS Thesis, Utah State University, Logan,Utah (2003)

    Google Scholar 

  13. Furse, C., Chung, Y., Dangol, R., Nielsen, M., Mabey, G., Woodward, R.: Frequency Domain Reflectometry for On Board Testing of Aging Aircraft Wiring. IEEE Trans. Electromagnetic Compatibility, 306–315 (2003)

    Google Scholar 

  14. Chung, Y., Furse, C., Pruitt, J.: Application of Phase Detection Frequency Domain Reflectometry for Locating Faults in an F-18 Flight Control Harness. IEEE Trans. EMC 47(2), 327–334 (2005)

    Google Scholar 

  15. Tsai, P., Lo, C., Chung, Y., Furse, C.: Mixed signal reflectometer for location of faults on aging wiring. IEEE Sensors Journal 5(6), 1479–1482 (2005)

    Article  Google Scholar 

  16. Furse, C., Smith, P., Safavi, M.: Feasibility of Spread Spectrum Reflectometry for Location of Arcs on Live Wires. IEEE Sensors Journal 5(6), 1469–1478 (2005)

    Article  Google Scholar 

  17. Furse, C., Lo, C., Chung, Y., Pendayala, P., Nagoti, K.: Spread Spectrum Sensors for Critical Fault Location on Live Wire Network Structures. Journal of Structural Control and Health Monitoring 12, 257–267 (2005)

    Article  Google Scholar 

  18. Chung, Y., Amarnath, N., Furse, C.: Capacitance and Inductance Sensors for Open and Short Ends Circuit Wire Faults Detection. IEEE Trans. Instrument and Measurement 58(8), 2495–2502 (2009)

    Article  Google Scholar 

  19. Iskander, M.: Electromagnetic Fields and Waves. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  20. White, E.: Personal Communication (April 13, 2004)

    Google Scholar 

  21. Pendayala, P.: Development of Algorithms for Accurate Wire Fault Location Using Spread Spectrum Reflectometry, MS Thesis, University of Utah (2004)

    Google Scholar 

  22. Basava, S.: Detection and Location of Cable Faults Using Reflectometry Methods, MS Thesis, Utah State University (2004)

    Google Scholar 

  23. Amarnath, N.: Capacitance and Inductance Sensors for the Location of Faults in Wires, MS Thesis, University of Utah (2004)

    Google Scholar 

  24. Mackay, N., Penstone, S.: High-sensitivity narrow-band time-domain reflectometer. IEEE Trans. Instrumentation and Measurement 23(2), 155–158 (1974)

    Article  Google Scholar 

  25. Chen, C., Roemer, L., Grumbach, R.: Cable Diagnostics for power cables. In: IEEE Annual Conference of Electrical Eng. Problems in Rubber and Plastic Industries, pp. 20–22 (April 1978)

    Google Scholar 

  26. Campbell Scientific, TDR100 Instruction Manual, ftp://ftp.campbellsci.com/pub/outgoing/manuals/tdr100.pdf

  27. Arcade Electronics, Psiber CT50 CableTool Multifunction Cable Meter, http://www.arcade-electronics.com/psiber/psiber_ct50_cabletool.html

  28. Mahoney, A., Lo, C., Chung, Y., Furse, C.: Use of Genetic Algorithms and Reflectometry for Identification of Network Topologies. Personal Communication

    Google Scholar 

  29. Furse, C., Kamdar, N.: An inexpensive distance measuring system for navigation of robotic vehicle. Microwave and Optical Tech. Letters 33(2), 84–97 (2002)

    Article  Google Scholar 

  30. Oppenheim, V.: Digital signal processing. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  31. Chung, Y.: Non-Destructive Fault Location on Aging Aircraft Wiring Net-works Part 1 – Cost-Optimized Solutions. IEEE APS and USNC/URSI National Radio Science Digest, Columbus Ohio (2003)

    Google Scholar 

  32. Eclypse Co. SWR meter, http://www.eclypse.org/Home.htm

  33. Medelius, P., Simson, H.: Non-intrusive impedance-based cable tester, US Patent 5977773 (November 1999)

    Google Scholar 

  34. Smith, P.: Spread spectrum time domain reflectometry, Ph.D. dissertation, Utah State University (2003)

    Google Scholar 

  35. Smith, P., Furse, C., Gunther, J.: Fault Location on Aircraft Wiring Using Spread Spectrum Time Domain Reflectometry. IEEE Sensors Journal 5(6), 1469–1478 (2005)

    Article  Google Scholar 

  36. Furse, C., Smith, P., Safavi, M., Lo, C.: Feasibility of Spread Spectrum Reflectometry for Location of Arcs on Live Wires. IEEE Journal of Sensors 5(6), 1445–1450 (2005)

    Article  Google Scholar 

  37. Furse, C., Lo, C., Chung, Y., Smith, P., Pendayala, P., Nagoti, K.: Spread Spectrum Sensors for Critical Fault Location on Live Wire Networks. Journal of Structural Control and Health Monitoring 12, 257–267 (2005)

    Article  Google Scholar 

  38. Lo, C., Furse, C.: Noise Domain Reflectometry for Wire Fault Location. IEEE Trans. EMC 47(1), 97–104 (2005)

    Google Scholar 

  39. Furse, C., Chung, Y., Lo, C., Pendayala, P.: A Critical Comparison of Reflec-tometry Methods for Location of Wiring Faults. Smart Structures and Systems 2(1), 25–46 (2006)

    Google Scholar 

  40. Griffiths, L., Parakh, R., Furse, C., Baker, B.: The Invisible Fray: A Critical Analysis of the Use of Reflectometry for Fray Location. IEEE Journal of Sensors 6(3), 697–670 (2006)

    Google Scholar 

  41. LiveWire Test Labs Personal communication from M. Mason, Dubai Petroleum (2010), http://livewiretest.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furse, C. (2011). Reflectometry for Structural Health Monitoring. In: Mukhopadhyay, S.C. (eds) New Developments in Sensing Technology for Structural Health Monitoring. Lecture Notes in Electrical Engineering, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21099-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21099-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21098-3

  • Online ISBN: 978-3-642-21099-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics