Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 96))

Abstract

The use of microelectromechanical systems (MEMS) technology to develop strain sensors (resonant and capacitive) is the main topic of this paper. Sensing technology can advance the design and integrity of structural systems in various industries by enabling monitoring of strains and stress concentrations within a mechanical structure in real-time. MEMS-based strain sensors enable performance improvements through increased resolutions, increased operation bandwidths and reduced sensitivity to noise. Therefore, the application of these devices can significantly improve the design robustness and efficiency by predicting catastrophic failures and enabling lightweight designs. MEMS strain sensors can impact the oil and gas, automotive, aerospace and buildings industries through the real-time monitoring of critical components. In addition to device performance, packaging, temperature compensation and long-term drift are important design considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bustillo, J., Howe, R., Muller, S.: Surface micromachining for microelec-tromechanical systems. Proc. of the IEEE 86(8), 1552–1574 (1998)

    Article  Google Scholar 

  2. Akyildiz, F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Senesky, D., Jamshidi, B., Cheng, K., Pisano, A.: Harsh Environment Sili-con Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review. IEEE Sensors Journal 9(11), 1472–1478 (2009)

    Article  Google Scholar 

  4. Chang, F.: Structural Health Monitoring: Current Status and Perspectives. CRC Press, Boca Raton (1998)

    Google Scholar 

  5. Ghezzo, F., Rye, P., Huang, Y., Nemat-Nasser, S.: Integration of sensing networks into laminated composites. In: Proc. of SPIE Int. Symp. on Smart Structures and Materials (2008)

    Google Scholar 

  6. Hautamaki, C., Zurn, S., Mantell, S., Polla, D.: Experimental evaluation of MEMS strain sensors embedded in composites. Journal of Microelectrome-chanical Systems 8(3), 272–279 (1999)

    Article  Google Scholar 

  7. Mall, S.: Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Materials and Structures 11, 527–533 (2002)

    Article  Google Scholar 

  8. PolyMUMPS Design Handbook, http://www.memscap.com

  9. Azevedo, R., Jones, D., Jog, A., Jamshidi, B., Myers, D., Chen, L., Fu, X., Mehregany, M., Wijesundara, M., Pisano, A.: A SiC MEMS Resonant Strain Sensor for Harsh Environment Application. IEEE Sensors Journal 7(4), 568–576 (2007)

    Article  Google Scholar 

  10. Myers, D., Cheng, K., Jamshidi, B., Azevedo, R., Senesky, D., Chen, L., Mehregany, M., Wijesundara, M., Pisano, A.: Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environ-ments. Journal of Micro/Nanolithography, MEMS, and MOEMS 8(021116) (2009)

    Google Scholar 

  11. Saponara, V., Horsley, D., Lestari, W.: Structural Health Monitoring of Glass/Epoxy Composite Plates Using PZT and PMN-PT Transducers. Journal of Engineering Materials and Technology 133(011011) (2011)

    Google Scholar 

  12. Wojciechowski, K., Boser, B., Pisano, A.: A MEMS Resonant Strain Sensor in Air. In: Proc. 17th IEEE International Conference on Micro Electro Mechanical Systems, pp. 841–845 (2004)

    Google Scholar 

  13. Azevedo, R., Zhang, J., Jones, D., Myers, D., Jog, A., Jamshidi, B., Wijesundara, M., Maboudian, R., Pisano, A.: Silicon Carbide Coated Silicon MEMS Strain Sensor for Harsh Environment Applications. In: Proc. 20th IEEE International Conference on Micro Electro Mechanical Systems, Japan, pp. 643–646 (2007)

    Google Scholar 

  14. Wojciechowski, K., Boser, B., Pisano, A.: A MEMS resonant strain sensor with 33 nano-strain resolution in a 10 kHz bandwidth. In: Proc. IEEE Sensors Conference, USA, pp. 947–950 (2005)

    Google Scholar 

  15. Young, W., Budynas, R.: Roark’s formulas for stress and strain, 7th edn., pp. 196–197. McGraw-Hill, New York (2002)

    Google Scholar 

  16. Roessig, T.: Integrated MEMS tuning fork oscillators for sensor applications. Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley (1998)

    Google Scholar 

  17. Wojciechowski, K.: Electronics for Resonant Sensors. Ph.D. Thesis, Department of Electrical Engineering, University of California, Berkeley (2005)

    Google Scholar 

  18. Myers, D., Pisano, A.: Torque Measurements of an Automotive Halfshaft Utilizing a MEMS Resonant Strain Gauge. In: Proc. of 15th International Conference on Solid-State Sensors, Actuators, & Microsystems, USA, pp. 1726–1729 (2009)

    Google Scholar 

  19. Filanc-Bowen, T., Kim, G., Shkel, Y.: Novel Sensor Technology for Shear and Normal Strain Detection with Generalized Electrostriction. Proceedings of IEEE Sensors 2(4), 1648–1653 (2002)

    Article  Google Scholar 

  20. Arshak, K., McDonagh, D., Duran, M.: Development of New Capacitive Strain Sensors Based on Thick Film Polymer and Cement Technologies. Sensors and Actuators A. 79, 102–114 (2000)

    Google Scholar 

  21. Cockbain, A., Horrop, P.: The Temperature Coefficient of Capacitance. British Journal of Applied Physics 2(9), 1109–1115 (1968)

    Google Scholar 

  22. Jamshidi, B., Azevedo, R., Jog, A., Pisano, A.: Silicon Cross-Axis Rejection Capacitive Strain Gauge. In: Proc. of ASME International Mechanical Engineering Congress and Exposition, USA (2007)

    Google Scholar 

  23. Guo, J., Kuo, H., Young, D., Ko, W.: Buckled Beam Linear Output Capacitive Strain Sensor. In: Proc. of Solid State Sensor, Actuator and Microsystems Workshop, USA (2004)

    Google Scholar 

  24. Azevedo, R., Chen, I., O’Reilly, O., Pisano, A.: Influence of Sensor Substrate Geometry on the Sensitivity of MEMS Micro-Extensometers. In: Proc. of International Mechanical Engineering Congress and Exposition, USA (2005)

    Google Scholar 

  25. Aebersold, J., Walsh, K., Crain, M., Martin, M., Voor, M., Lin, J., Jackson, D., Hunt, W., Naber, J.: Design and Development of a MEMS Capacitive Bending Strain Sensor. Journal of Micromechanics and Microengineering 16, 935–942 (2006)

    Article  Google Scholar 

  26. Guo, J., Suster, M., Young, D., Ko, W.: High-Gain Mechanically Amplified Capacitive Strain Sensors. In: Proc. of IEEE Annual Meeting, pp. 464–467 (2005)

    Google Scholar 

  27. Jamshidi, B.: Poly-Crystalline Silicon Carbide Passivated Capacitive MEMS Strain Gauge for Harsh Environments. Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley (2008)

    Google Scholar 

  28. Azevedo, R.: Design and Evaluation of a MEMS Offset Capacitive Comb Strain Sensor. M.Sc. Dissertation, Department of Mechanical Engineering, University of California, Berkeley (2003)

    Google Scholar 

  29. Jamshidi, B., Azevedo, R., Wijesundara, M., Pisano, A.: Corrosion Enhanced Capacitive Strain Gauge at 370°C. In: Proc. of the 6th Annual IEEE Conference on Sensors, USA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Senesky, D.G., Jamshidi, B. (2011). MEMS Strain Sensors for Intelligent Structural Systems. In: Mukhopadhyay, S.C. (eds) New Developments in Sensing Technology for Structural Health Monitoring. Lecture Notes in Electrical Engineering, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21099-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21099-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21098-3

  • Online ISBN: 978-3-642-21099-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics