Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 96))

Abstract

In this chapter the most important fiber optic sensors for structural health monitoring applications are reviewed. Emphasis is placed on sensors that are currently commercially available and have a potential for widespread deployment. Four major sensor types are analyzed: from mature, well-established technologies such as fiber Bragg gratings and interferometric sensors to newer distributed sensor technologies based on Brillouin and Rayleigh scattering effects. For each sensor type their operation is described including its physical fundamentals. Moreover, typical performance specifications as well as application areas are discussed. A descriptive approach is adopted throughout the text so as to facilitate basic understanding of the material to non-experts in the field of photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. López-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, Chichester (2002)

    Google Scholar 

  2. Kuang, K.S.C., Cantwell, W.J.: Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review. Appl. Mech. Rev. 56, 493 (2003)

    Article  Google Scholar 

  3. Othonos, A., Kalli, K.: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Artech House Publishers, Boston (1999)

    Google Scholar 

  4. Kersey, A.D., Berkoff, T.A., Morey, W.W.: Multiplexed Fiber Bragg Grating Strain Sensor System with a Fiber Fabry-Perot Wavelength Filter. Opt. Lett. 18, 1370–1372 (1993)

    Article  Google Scholar 

  5. Morey, W.W., Dumphy, J.R., Meltz, G.: Multiplexing Fiber Bragg Grating Sensors. In: Proc. of SPIE, vol. 1586, pp. 216–224 (1991)

    Google Scholar 

  6. Yoffe, G.W., Peter, A., Krug, F., Ouellette, Thorncraft, D.A.: Passive temperature-compensating package for optical fiber gratings. Appl. Opt. 34, 6859–6861 (1995)

    Article  Google Scholar 

  7. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley Interscience, Hoboken (2007)

    Google Scholar 

  8. Glisic, B., Inaudi, D.: Fibre Optic Methods for Structural Health Monitoring. Wiley Interscience, Hoboken (2008)

    Google Scholar 

  9. Murphy, K.A., et al.: EFPI sensor manufacturing and applications. In: Proc. Smart Structures and Materials 1996: Industrial and Commercial Applications, San Diego, pp. 476–482 (1996)

    Google Scholar 

  10. Chena, J., Chena, D., Genga, J., Li, J., Caia, H., Fanga, Z.: Stabilization of optical Fabry–Perot sensor by active feedback control of diode laser. Sensors and Actuators A 148, 376–380 (2008)

    Article  Google Scholar 

  11. Hotate, K.: Fiber Optic Nerve Systems for Smart Materials and Smart Structures. Optical Sensors, OSA Technical Digest (CD) (Optical Society of America paper SWB2) (2010)

    Google Scholar 

  12. Agrawal, G.: Nonlinear Fiber Optics. Academic Press, London (2006)

    Google Scholar 

  13. Zou, W., He, Z., Hotate, K.: Investigation of Strain- and Temperature-Dependences of Brillouin Frequency Shifts in GeO2-Doped Optical Fibers. J. Lightwave Technol. 26, 1854–1861 (2008)

    Article  Google Scholar 

  14. Kurashima, T., Tateda, M.: Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers. Appl. Opt. 29, 2219–2222 (1990)

    Article  Google Scholar 

  15. Nikles, M., Thevenaz, L., Robert, P.A.: Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers. J. Lightwave Technol. 15, 1842–1851 (1997)

    Article  Google Scholar 

  16. Horiguchi, T., Tateda, M.: Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt. Lett. 14, 408–410 (1989)

    Article  Google Scholar 

  17. Horiguchi, T., Kurashima, T., Tateda, M.: A technique to measure distributed strain in optical fibers. IEEE Photon. Technol. Lett. 2, 352–354 (1990)

    Article  Google Scholar 

  18. Kurashima, T., Horiguchi, T., Tateda, M.: Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 15, 1038–1040 (1990)

    Article  Google Scholar 

  19. Zornoza, A., Olier, D., Sagues, M., Loayssa, A.: Brillouin distributed sensor using RF shaping of pump pulses. Meas. Sci. Technol. (2010), doi:10.1088/0957-0233/21/9/094021

    Google Scholar 

  20. Garus, D., Krebber, K., Schliep, F., Gogolla, T.: Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. Opt. Lett. 21, 1402–1404 (1996)

    Article  Google Scholar 

  21. Hotate, K., Hasegawa, T.: Measurement of Brillouin Gain spectrum distribution along an Optical Fiber Using a Correlation-Based Technique – Proposal, experiment and simulation. IEICE Trans. Electron. E83C, 405–412 (2000)

    Google Scholar 

  22. Hotate, K., Tanaka, M.: Distributed Fiber Brillouin Strain sensing with 1-cm spatial resolution by correlation-based continous-wave technique. IEEE Photon. Technol. Lett. 14, 179–181 (2002)

    Article  Google Scholar 

  23. Song, K.-Y., Hotate, K.: Enlargement of Measurement Range in a Brillouin Optical Correlation Domain Analysis System Using Double Lock-in Amplifiers and a Single-Sideband Modulator. IEEE Photon. Technol. Lett. 18, 499–501 (2006)

    Article  Google Scholar 

  24. Shimizu, K., Horiguchi, T., Koyamada, Y., Kurashima, T.: Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single mode fiber. Opt. Lett. 18, 185–187 (1993)

    Article  Google Scholar 

  25. Alahbabi, M., Cho, Y.T., Newson, T.P.: 100 Km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 15, 1544–1547 (2004)

    Article  Google Scholar 

  26. Bao, X., Brown, A., DeMerchant, M., Smith, J.: Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (10-ns) pulses. Opt. Lett. 24, 510–512 (1999)

    Article  Google Scholar 

  27. Kalosha, V.P., Ponomarev, E.A., Chen, L., Bao, X.: How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses. Opt. Express 14, 2071–2078 (2006)

    Article  Google Scholar 

  28. Brown, A.W., Colpitts, B.G., Brown, K.: Dark-Pulse Brillouin Optical Time-Domain Sensor With 20-mm Spatial Resolution. J. Lightwave Technol. 25, 381–386 (2007)

    Article  Google Scholar 

  29. Foaleng, S.M., Tur, M., Beugnot, J.-C., Thévenaz, L.: High Spatial and Spectral Resolution Long-Range Sensing Using Brillouin Echoes. J. Lightwave Technol. 28, 2993–3003 (2010)

    Article  Google Scholar 

  30. Alasia, D., Herraez, M.G., Abrardi, L., Martin-Lopez, S., Thévenaz, L.: Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering. In: 17th International Conference on Optical Fibre Sensors, pp. 587–590 (2005)

    Google Scholar 

  31. Soto, M.A., Bolognini, G., Di Pasquale, F.: Analysis of pulse modulation format in coded BOTDA sensors. Opt. Express 18, 14878–14892 (2010)

    Article  Google Scholar 

  32. Zornoza, A., Pérez-Herrera, R.A., Elosúa, C., Diaz, S., Bariain, C., Loayssa, A., Lopez-Amo, M.: Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification. Opt. Express 18, 9531–9541 (2010)

    Article  Google Scholar 

  33. Minardo, A., Bernini, R., Zegni, L., Thevenaz, L., Briffod, F.: A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results. Meas. Sci. Technol. 16, 900–908 (2005)

    Article  Google Scholar 

  34. Zou, L., Bao, X., Shahraam Afshar, V., Chen, L.: Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett. 29, 1485–1487 (2004)

    Article  Google Scholar 

  35. Glombitza, U., Brinkmeyer, E.: Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides. J. Lightwave Technol. 11, 1377–1384 (1993)

    Article  Google Scholar 

  36. Soller, B.J., Wolfe, M., Froggatt, M.E.: Polarization resolved measurement of Rayleigh backscatter in fiber-optic components. In: Proceedings Optical Fiber Communications Conference 2005, paper NWD3 (2005)

    Google Scholar 

  37. Soller, B.J., Gifford, D.K., Wolfe, M.S., Froggatt, M.E.: High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 13, 666–674 (2005)

    Article  Google Scholar 

  38. Froggatt, M., Moore, J.: High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter. Appl. Opt. 37, 1735–1740 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loayssa, A. (2011). Optical Fiber Sensors for Structural Health Monitoring. In: Mukhopadhyay, S.C. (eds) New Developments in Sensing Technology for Structural Health Monitoring. Lecture Notes in Electrical Engineering, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21099-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21099-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21098-3

  • Online ISBN: 978-3-642-21099-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics