Skip to main content

Antitumor Ribonucleases

  • Chapter
  • First Online:
Ribonucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC))

Abstract

Ribonucleases are small basic proteins that have shown remarkable antitumor activity linked to their ability to destroy RNA. Therefore, they are a second line of cancer chemotherapeutics as they are not genotoxic. This chapter summarizes the main biochemical characteristics of these enzymes and the key factors responsible for their cytotoxic mechanism. Some of them are shared by most cytotoxins, but each RNase has particular cancer cell killing abilities. The effects on the cell cycle and the induced apoptosis mechanism are cell dependent. The knowledge obtained from the cytotoxic mechanism of natural cytotoxic RNases has been used to artificially engineer more potent and selective RNA-degrading enzymes. These approaches are also described. The chapter ends with a brief description of the results of the clinical trials performed with RNases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrowicz J (1958) Intracutaneous ribonuclease in chronic myelocytic leukemia. Lancet 272:420–422

    Article  Google Scholar 

  • Altomare DA, Rybak SM, Pei J, Maizel JV, Cheung M, Testa JR, Shogen K (2010) Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent. BMC Cancer 10:34

    Article  PubMed  CAS  Google Scholar 

  • Antignani A, Naddeo M, Cubellis MV, Russo A, D’Alessio G (2001) Antitumor action of seminal ribonuclease, its dimeric structure, and its resistance to the cytosolic ribonuclease inhibitor. Biochemistry 40:3492–3496

    Article  PubMed  CAS  Google Scholar 

  • Ardelt W, Mikulski SM, Shogen K (1991) Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem 266:245–251

    PubMed  CAS  Google Scholar 

  • Ardelt B, Ardelt W, Darzynkiewicz Z (2003) Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2:22–24

    Article  PubMed  CAS  Google Scholar 

  • Ardelt B, Juan G, Burfeind P, Salomon T, Wu JM, Hsieh TC, Li X, Sperry R, Pozarowski P, Shogen K, Ardelt W, Darzynkiewicz Z (2007a) Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. Int J Oncol 31:663–669

    PubMed  CAS  Google Scholar 

  • Ardelt B, Ardelt W, Pozarowski P, Kunicki J, Shogen K, Darzynkiewicz Z (2007b) Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle 6:3097–3102

    Article  PubMed  CAS  Google Scholar 

  • Ardelt W, Shogen K, Darzynkiewicz Z (2008) Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol 9:215–225

    Article  PubMed  CAS  Google Scholar 

  • Ardelt W, Ardelt B, Darzynkiewicz Z (2009) Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol 625:181–189

    Article  PubMed  CAS  Google Scholar 

  • Arndt MA, Krauss J, Vu BK, Newton DL, Rybak SM (2005) A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J Immunother 28:245–251

    Article  PubMed  CAS  Google Scholar 

  • Arnold U (2008) Aspects of the cytotoxic action of ribonucleases. Curr Pharm Biotechnol 9:161–168

    Article  PubMed  CAS  Google Scholar 

  • Arnold U, Ulbrich-Hofmann R (2006) Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett 28:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R (2006) Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Biochemistry 45:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Balandin TG, Edelweiss E, Andronova NV, Treshalina EM, Sapozhnikov AM, Deyev SM (2011) Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Invest New Drugs 29(1):22–32, Epub 2009 Sep 30

    Article  PubMed  CAS  Google Scholar 

  • Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR, Gleich GJ (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143:952–955

    PubMed  CAS  Google Scholar 

  • Bartholeyns J, Baudhuin P (1976) Inhibition of tumor cell proliferation by dimerized ribonuclease. Proc Natl Acad Sci USA 73:573–576

    Article  PubMed  CAS  Google Scholar 

  • Bartholeyns J, Moore S (1974) Pancreatic ribonuclease: enzymic and physiological properties of a cross-linked dimer. Science 186:444–445

    Article  PubMed  CAS  Google Scholar 

  • Beck AK, Pass HI, Carbone M, Yang H (2008) Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol 4:341–349

    Article  PubMed  CAS  Google Scholar 

  • Benito A, Ribo M, Vilanova M (2005) On the track of antitumour ribonucleases. Mol Biosyst 1:294–302

    Article  PubMed  CAS  Google Scholar 

  • Benito A, Laurents DV, Ribo M, Vilanova M (2008a) The structural determinants that lead to the formation of particular oligomeric structures in the pancreatic-type ribonuclease family. Curr Protein Pept Sci 9:370–393

    Article  PubMed  CAS  Google Scholar 

  • Benito A, Vilanova M, Ribo M (2008b) Intracellular routing of cytotoxic pancreatic-type ribonucleases. Curr Pharm Biotechnol 9:169–179

    Article  PubMed  CAS  Google Scholar 

  • Boix E (2001) Eosinophil cationic protein. Methods Enzymol 341:287–305

    Article  PubMed  CAS  Google Scholar 

  • Boix E, Wu Y, Vasandani VM, Saxena SK, Ardelt W, Ladner J, Youle RJ (1996) Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol 257:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Boix E, Leonidas DD, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR (1999) Crystal structure of eosinophil cationic protein at 2.4 A resolution. Biochemistry 38:16794–16801

    Article  PubMed  CAS  Google Scholar 

  • Boix E, Torrent M, Sanchez D, Nogues MV (2008) The antipathogen activities of eosinophil cationic protein. Curr Pharm Biotechnol 9:141–152

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Benito A, Ribo M, Puig T, Beaumelle B, Vilanova M (2004) A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry 43:2167–2177

    Article  PubMed  CAS  Google Scholar 

  • Bracale A, Spalletti-Cernia D, Mastronicola M, Castaldi F, Mannucci R, Nitsch L, D’Alessio G (2002) Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem J 362:553–560

    Article  PubMed  CAS  Google Scholar 

  • Bracale A, Castaldi F, Nitsch L, D’Alessio G (2003) A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action. Eur J Biochem 270:1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Braschoss S, Hirsch B, Dubel S, Stein H, Durkop H (2007) New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma 48:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Bretscher LE, Abel RL, Raines RT (2000) A ribonuclease A variant with low catalytic activity but high cytotoxicity. J Biol Chem 275:9893–9896

    Article  PubMed  CAS  Google Scholar 

  • Cafaro V, De Lorenzo C, Piccoli R, Bracale A, Mastronicola MR, Di Donato A, D’Alessio G (1995) The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett 359:31–34

    Article  PubMed  CAS  Google Scholar 

  • Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV (2005) Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 272:1–7

    Article  PubMed  CAS  Google Scholar 

  • Chang CF, Chen C, Chen YC, Hom K, Huang RF, Huang TH (1998) The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J Mol Biol 283:231–244

    Article  PubMed  CAS  Google Scholar 

  • Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH, Chung CT, Fang SL, Chao CC, Tsai JJ, Lai YK (2010) TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC Cell Biol 11:6

    Article  PubMed  CAS  Google Scholar 

  • Chao TY, Lavis LD, Raines RT (2010) Cellular uptake of ribonuclease A relies on anionic glycans. Biochemistry 49:10666–10673

    Article  PubMed  CAS  Google Scholar 

  • Chun H, Costanzi J, Mittelman A, Panella T, Puccio C, Coombe N, Shogen K, Mikulski S (1995) Phase I/II trial of onconase (ONC) plus tamoxifen (TMX) in patients (pts) with advanced pancreatic carcinoma. Proc Am Soc Clin Oncol (ASCO) 14: Abstract 517

    Google Scholar 

  • Cinalt JJ, Cinatl J, Kotchetkov R, Vogel J, Woodcock B, Matousek J, Pouckova P, Kornhuber B (1999) Bovine seminal ribonuclease selectively kills human multidrug-resistant neuroblastoma cells via induction of apoptosis. Int J Oncol 15:1001–1009

    Google Scholar 

  • Costanzi J, Sidransky D, Navon A, Goldsweig H (2005) Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest 23:643–650

    Article  PubMed  CAS  Google Scholar 

  • Cuchillo CM, Vilanova M, Nogués MV (1997) Pancreatic ribonucleases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 271–304

    Chapter  Google Scholar 

  • D’Alessio G, Di Donato A, Parente A, Piccoli R (1991) Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci 16:104–106

    Article  PubMed  Google Scholar 

  • D’Alessio G, di Donato A, Mazzarella L, Piccoli R (1997) Seminal ribonuclease: the importance of diversity. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 383–423

    Chapter  Google Scholar 

  • Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K (1988) Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet 21:169–182

    PubMed  CAS  Google Scholar 

  • De Lorenzo C, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R, D’Alessio G (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874

    Article  PubMed  Google Scholar 

  • De Lorenzo C, Di Malta C, Cali G, Troise F, Nitsch L, D’Alessio G (2007) Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Lett 581:296–300

    Article  PubMed  CAS  Google Scholar 

  • Deptala A, Halicka HD, Ardelt B, Ardelt W, Mikulski SM, Shogen K, Darzynkiewicz Z (1998) Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol 13:11–16

    PubMed  CAS  Google Scholar 

  • Di Donato A, Cafaro V, D’Alessio G (1994) Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem 269:17394–17396

    PubMed  Google Scholar 

  • Di Gaetano S, D’Alessio G, Piccoli R (2001) Second generation antitumour human RNase: significance of its structural and functional features for the mechanism of antitumour action. Biochem J 358:241–247

    Article  PubMed  Google Scholar 

  • Dickson KA, Raines RT (2009) Silencing an inhibitor unleashes a cytotoxic enzyme. Biochemistry 48:5051–5053

    Article  PubMed  CAS  Google Scholar 

  • Dickson KA, Dahlberg CL, Raines RT (2003) Compensating effects on the cytotoxicity of ribonuclease A variants. Arch Biochem Biophys 415:172–177

    Article  PubMed  CAS  Google Scholar 

  • Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374

    Article  PubMed  CAS  Google Scholar 

  • Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26:3358–3363

    Article  PubMed  CAS  Google Scholar 

  • Dübel S (2007) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA 76:1443–1447

    Article  PubMed  CAS  Google Scholar 

  • Ellis GA, Hornung ML, Raines RT (2010) Potentiation of ribonuclease cytotoxicity by a poly(amidoamine) dendrimer. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2010.11.028

    Google Scholar 

  • Ercole C, Colamarino RA, Pizzo E, Fogolari F, Spadaccini R, Picone D (2009) Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach. Biopolymers 91:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Fan TC, Chang HT, Chen IW, Wang HY, Chang MD (2007) A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 8:1778–1795

    Article  PubMed  CAS  Google Scholar 

  • Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD (2008) Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem 283:25468–25474

    Article  PubMed  CAS  Google Scholar 

  • Fang EF, Ng TB (2011) Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta 1815:65–74

    PubMed  CAS  Google Scholar 

  • Favaretto A (2005) Overview on ongoing or planned clinical trials in Europe. Lung Cancer 49(Suppl 1):S117–S121

    Article  PubMed  Google Scholar 

  • Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544

    Article  PubMed  CAS  Google Scholar 

  • Fuchs SM, Rutkoski TJ, Kung VM, Groeschl RT, Raines RT (2007) Increasing the potency of a cytotoxin with an arginine graft. Protein Eng Des Sel 20:505–509

    Article  PubMed  CAS  Google Scholar 

  • Futami J, Maeda T, Kitazoe M, Nukui E, Tada H, Seno M, Kosaka M, Yamada H (2001) Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry 40:7518–7524

    Article  PubMed  CAS  Google Scholar 

  • Futami J, Nukui E, Maeda T, Kosaka M, Tada H, Seno M, Yamada H (2002) Optimum modification for the highest cytotoxicity of cationized ribonuclease. J Biochem 132:223–228

    Article  PubMed  CAS  Google Scholar 

  • Gahl RF, Scheraga HA (2009) Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Biochemistry 48:2740–2751

    Article  PubMed  CAS  Google Scholar 

  • Gahl RF, Narayan M, Xu G, Scheraga HA (2008) Dissimilarity in the oxidative folding of onconase and ribonuclease A, two structural homologues. Protein Eng Des Sel 21:223–231

    Article  PubMed  CAS  Google Scholar 

  • Gaur D, Swaminathan S, Batra JK (2001) Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J Biol Chem 276:24978–24984

    Article  PubMed  CAS  Google Scholar 

  • Gelardi T, Damiano V, Rosa R, Bianco R, Cozzolino R, Tortora G, Laccetti P, D’Alessio G, De Lorenzo C (2010) Two novel human anti-ErbB2 immunoagents are active on trastuzumab-resistant tumours. Br J Cancer 102:513–519

    Article  PubMed  CAS  Google Scholar 

  • Gho YS, Chae CB (1999) Luteinizing hormone releasing hormone-RNase A conjugates specifically inhibit the proliferation of LHRH-receptor-positive human prostate and breast tumor cells. Mol Cells 9:31–36

    PubMed  CAS  Google Scholar 

  • Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM (2006) A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293 T cells. Gene 366:97–103

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767–778

    Article  PubMed  CAS  Google Scholar 

  • Gotte G, Testolin L, Costanzo C, Sorrentino S, Armato U, Libonati M (1997) Cross-linked trimers of bovine ribonuclease A: activity on double-stranded RNA and antitumor action. FEBS Lett 415:308–312

    Article  PubMed  CAS  Google Scholar 

  • Grabarek J, Ardelt B, Du L, Darzynkiewicz Z (2002) Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase). Exp Cell Res 278:61–71

    Article  PubMed  CAS  Google Scholar 

  • Gurova K (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5:1685–1704

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Raines RT (2003) Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J Cell Sci 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Kurten EL, Abel RL, Raines RT (2002) KFERQ sequence in ribonuclease A-mediated cytotoxicity. J Biol Chem 277:11576–11581

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Kurten EL, Raines RT (2003) Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 31:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Halicka HD, Murakami T, Papageorgio CN, Mittelman A, Mikulski SM, Shogen K, Darzynkiewicz Z (2000) Induction of differentiation of leukaemic (HL-60) or prostate cancer (LNCaP, JCA-1) cells potentiates apoptosis triggered by onconase. Cell Prolif 33:407–417

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134

    Article  PubMed  CAS  Google Scholar 

  • Ilinskaya ON, Dreyer F, Mitkevich VA, Shaw KL, Pace CN, Makarov AA (2002) Changing the net charge from negative to positive makes ribonuclease Sa cytotoxic. Protein Sci 11:2522–2525

    Article  PubMed  CAS  Google Scholar 

  • Ilinskaya ON, Koschinski A, Mitkevich VA, Repp H, Dreyer F, Pace CN, Makarov AA (2004) Cytotoxicity of RNases is increased by cationization and counteracted by K(Ca) channels. Biochem Biophys Res Commun 314:550–554

    Article  PubMed  CAS  Google Scholar 

  • Iordanov MS, Wong J, Newton DL, Rybak SM, Bright RK, Flavell RA, Davis RJ, Magun BE (2000a) Differential requirement for the stress-activated protein kinase/c-Jun NH(2)-terminal kinase in RNAdamage-induced apoptosis in primary and in immortalized fibroblasts. Mol Cell Biol Res Commun 4:122–128

    Article  PubMed  CAS  Google Scholar 

  • Iordanov MS, Ryabinina OP, Wong J, Dinh TH, Newton DL, Rybak SM, Magun BE (2000b) Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 60:1983–1994

    PubMed  CAS  Google Scholar 

  • Irie M (1997) RNase T1/RNaseT2 family RNases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 101–130

    Chapter  Google Scholar 

  • Irie M, Nitta K, Nonaka T (1998) Biochemistry of frog ribonucleases. Cell Mol Life Sci 54:775–784

    Article  PubMed  CAS  Google Scholar 

  • Ita M, Halicka HD, Tanaka T, Kurose A, Ardelt B, Shogen K, Darzynkiewicz Z (2008) Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther 7:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Iwama M, Ogawa Y, Sasaki N, Nitta K, Takayanagi Y, Ohgi K, Tsuji T, Irie M (2001) Effect of modification of the carboxyl groups of the sialic acid binding lectin from bullfrog (Rana catesbeiana) oocyte on anti-tumor activity. Biol Pharm Bull 24:978–981

    Article  PubMed  CAS  Google Scholar 

  • Jinno H, Ueda M, Ozawa S, Kikuchi K, Ikeda T, Enomoto K, Kitajima M (1996a) Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines–a trial for less immunogenic chimeric toxin. Cancer Chemother Pharmacol 38:303–308

    Article  PubMed  CAS  Google Scholar 

  • Jinno H, Ueda M, Ozawa S, Ikeda T, Enomoto K, Psarras K, Kitajima M, Yamada H, Seno M (1996b) Epidermal growth factor receptor-dependent cytotoxicity for human squamous carcinoma cell lines of a conjugate composed of human EGF and RNase 1. Life Sci 58:1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Jinno H, Ueda M, Ozawa S, Ikeda T, Kitajima M, Maeda T, Seno M (2002) The cytotoxicity of a conjugate composed of human epidermal growth factor and eosinophil cationic protein. Anticancer Res 22:4141–4145

    PubMed  CAS  Google Scholar 

  • Johnson VG, Wrobel C, Wilson D, Zovickian J, Greenfield L, Oldfield EH, Youle R (1989) Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J Neurosurg 70:240–248

    Article  PubMed  CAS  Google Scholar 

  • Johnson RJ, Chao TY, Lavis LD, Raines RT (2007a) Cytotoxic ribonucleases: the dichotomy of Coulombic forces. Biochemistry 46:10308–10316

    Article  PubMed  CAS  Google Scholar 

  • Johnson RJ, McCoy JG, Bingman CA, Phillips GN Jr, Raines RT (2007b) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 368:434–449

    Article  PubMed  CAS  Google Scholar 

  • Juan G, Ardelt B, Li X, Mikulski SM, Shogen K, Ardelt W, Mittelman A, Darzynkiewicz Z (1998) G1 arrest of U937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia 12:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Soucek J, Matousek J, Raines RT (1995a) Mechanism of ribonuclease cytotoxicity. J Biol Chem 270:31097–31102

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Soucek J, Matousek J, Raines RT (1995b) Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem J 308(Pt 2):547–550

    PubMed  CAS  Google Scholar 

  • Kim BM, Kim H, Raines RT, Lee Y (2004) Glycosylation of onconase increases its conformational stability and toxicity for cancer cells. Biochem Biophys Res Commun 315:976–983

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Kim EJ, Kalota A, Gewirtz AM, Glickson J, Shogen K, Lee I (2007) Possible mechanisms of improved radiation response by cytotoxic RNase, Onconase, on A549 human lung cancer xenografts of nude mice. Adv Exp Med Biol 599:53–59

    Article  PubMed  Google Scholar 

  • Klink TA, Raines RT (2000) Conformational stability is a determinant of ribonuclease A cytotoxicity. J Biol Chem 275:17463–17467

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1996) Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J Mol Biol 264:1028–1043

    Article  PubMed  CAS  Google Scholar 

  • Kotchetkov R, Cinatl J, Krivtchik AA, Vogel JU, Matousek J, Pouckova P, Kornhuber B, Schwabe D, Cinatl J Jr (2001) Selective activity of BS-RNase against anaplastic thyroid cancer. Anticancer Res 21:1035–1042

    PubMed  CAS  Google Scholar 

  • Krauss J, Arndt MA, Vu BK, Newton DL, Rybak SM (2005a) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 128:602–609

    Article  PubMed  CAS  Google Scholar 

  • Krauss J, Arndt MA, Vu BK, Newton DL, Seeber S, Rybak SM (2005b) Efficient killing of CD22+ tumor cells by a humanized diabody-RNase fusion protein. Biochem Biophys Res Commun 331:595–602

    Article  PubMed  CAS  Google Scholar 

  • Laurents DV, Bruix M, Jimenez MA, Santoro J, Boix E, Moussaoui M, Nogues MV, Rico M (2009) The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Biopolymers 91:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L (1955a) Action of ribonuclease on two solid tumours in vivo. Nature 176:36–37

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L (1955b) Action of ribonuclease on certain ascites tumours. Nature 175:258–259

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L (1956) Action of ribonuclease on neoplastic growth. II. Action on Landschutz ascites cells in vitro. Biochim Biophys Acta 20:369–377

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L, Baltus E (1954) The effects of ribonuclease on cells of Ehrlich carcinoma. Experientia 10:500–501

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L, Revell SH (1955) Action of ribonuclease on neoplastic growth. I. Chemical aspects of normal tumour growth: the Landschutz ascites tumour. Biochim Biophys Acta 18:416–426

    Article  PubMed  CAS  Google Scholar 

  • Lee I (2008) Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 8:813–827

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Raines RT (2003) Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry 42:11443–11450

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Raines RT (2005) Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry 44:15760–15767

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Raines RT (2008) Ribonucleases as novel chemotherapeutics: the ranpirnase example. BioDrugs 22:53–58

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Shogen K (2008) Mechanisms of enhanced tumoricidal efficacy of multiple small dosages of ranpirnase, the novel cytotoxic ribonuclease, on lung cancer. Cancer Chemother Pharmacol 62:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Lee YH, Mikulski SM, Lee J, Covone K, Shogen K (2000a) Tumoricidal effects of onconase on various tumors. J Surg Oncol 73:164–171

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Lee YH, Mikulski SM, Lee J, Shogen K (2000b) Enhanced cellular radiation sensitivity of androgen-independent human prostate tumor cells by onconase. Anticancer Res 20:1037–1040

    PubMed  CAS  Google Scholar 

  • Lee I, Lee YH, Mikulski SM, Shogen K (2003) Effect of ONCONASE +/− tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol 530:187–196

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Kalota A, Gewirtz AM, Shogen K (2007a) Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res 27:299–307

    PubMed  CAS  Google Scholar 

  • Lee I, Kim DH, Sunar U, Magnitsky S, Shogen K (2007b) The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer. In Vivo 21:721–728

    PubMed  CAS  Google Scholar 

  • Lee JE, Bae E, Bingman CA, Phillips GN Jr, Raines RT (2008) Structural basis for catalysis by onconase. J Mol Biol 375:165–177

    Article  PubMed  CAS  Google Scholar 

  • Leich F, Koditz J, Ulbrich-Hofman R, Arnold U (2006) Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity. J Mol Biol 358:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Leich F, Stohr N, Rietz A, Ulbrich-Hofmann R, Arnold U (2007) Endocytotic internalization as a crucial factor for the cytotoxicity of ribonucleases. J Biol Chem 282:27640–27646

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Raines RT (2001) Cancer chemotherapy–ribonucleases to the rescue. Chem Biol 8:405–413

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Schultz LW, Kim BM, Raines RT (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci USA 95:10407–10412

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Staniszewski KE, Kim B, Raines RT (2000) A synapomorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease. FEBS Lett 477:203–207

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Staniszewski KE, Kim BM, Raines RT (2001) Endowing human pancreatic ribonuclease with toxicity for cancer cells. J Biol Chem 276:43095–43102

    Article  PubMed  CAS  Google Scholar 

  • Li WM, Barnes T, Lee CH (2010) Endoribonucleases–enzymes gaining spotlight in mRNA metabolism. FEBS J 277:627–641

    Article  PubMed  CAS  Google Scholar 

  • Libonati M (2004) Biological actions of the oligomers of ribonuclease A. Cell Mol Life Sci 61:2431–2436

    Article  PubMed  CAS  Google Scholar 

  • Libonati M, Floridi A (1969) Breakdown of double-stranded RNA by bull semen ribonuclease. Eur J Biochem 8:81–87

    Article  PubMed  CAS  Google Scholar 

  • Libonati M, Sorrentino S, Galli R, La Montagna R, Di Donato A (1975) Degradation of DNA. RNA hybrids by aggregates of pancreatic ribonuclease. Biochim Biophys Acta 407:292–298

    Article  PubMed  CAS  Google Scholar 

  • Libonati M, Gotte G, Vottariello F (2008) A novel biological actions acquired by ribonuclease through oligomerization. Curr Pharm Biotechnol 9:200–209

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ, Newton DL, Mikulski SM, Kung HF, Youle RJ, Rybak SM (1994) Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Biochem Biophys Res Commun 204:156–162

    Article  PubMed  CAS  Google Scholar 

  • Lipovova P, Podzimek T, Orctova L, Matousek J, Pouckova P, Soucek J (2008) Antitumor and biological effects of black pine (pinus nigra) pollen nuclease. Neoplasma 55:158–164

    PubMed  CAS  Google Scholar 

  • Los M (2009) New, exciting developments in experimental therapies in the early 21st century. Eur J Pharmacol 625:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anticancer Drugs 19:931–939

    Article  PubMed  CAS  Google Scholar 

  • Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M (2002a) Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269:307–316

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Mahara K, Kitazoe M, Futami J, Takidani A, Kosaka M, Tada H, Seno M, Yamada H (2002b) RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J Biochem 132:737–742

    Article  PubMed  CAS  Google Scholar 

  • Makarov AA, Ilinskaya ON (2003) Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett 540:15–20

    Article  PubMed  CAS  Google Scholar 

  • Makarov AA, Kolchinsky A, Ilinskaya ON (2008) Binase and other microbial RNases as potential anticancer agents. Bioessays 30:781–790

    Article  PubMed  CAS  Google Scholar 

  • Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX, Coll M (2000) Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. J Mol Biol 300:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Mancheno JM, Gasset M, Onaderra M, Gavilanes JG, D’Alessio G (1994) Bovine seminal ribonuclease destabilizes negatively charged membranes. Biochem Biophys Res Commun 199:119–124

    Article  PubMed  CAS  Google Scholar 

  • Marinov I, Soucek J (2000) Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines. Neoplasma 47:294–298

    PubMed  CAS  Google Scholar 

  • Mastronicola MR, Piccoli R, D’Alessio G (1995) Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease. Eur J Biochem 230:242–249

    Article  PubMed  CAS  Google Scholar 

  • Matousek J (2001) Ribonucleases and their antitumor activity. Comp Biochem Physiol C Toxicol Pharmacol 129:175–191

    Article  PubMed  CAS  Google Scholar 

  • Matousek J (2010) Plant ribonucleases and nucleases as antiproliferative agents targeting human tumors growing in mice. Recent Pat DNA Gene Seq 4:29–39

    Article  PubMed  CAS  Google Scholar 

  • Matousek J, Gotte G, Pouckova P, Soucek J, Slavik T, Vottariello F, Libonati M (2003) Antitumor activity and other biological actions of oligomers of ribonuclease A. J Biol Chem 278:23817–23822

    Article  PubMed  CAS  Google Scholar 

  • Matousek J, Podzimek T, Pouckova P, Stehlik J, Skvor J, Lipovova P (2010) Antitumor activity of apoptotic nuclease TBN1 from L. esculentum. Neoplasma 57:339–348

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella L, Capasso S, Demasi D, Di Lorenzo G, Mattia CA, Zagari A (1993) Bovine seminal ribonuclease: structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr 49:389–402

    Article  PubMed  CAS  Google Scholar 

  • Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37:668–678

    Article  PubMed  CAS  Google Scholar 

  • Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111:3830–3837

    Article  PubMed  CAS  Google Scholar 

  • Merlino A, Avella G, Di Gaetano S, Arciello A, Piccoli R, Mazzarella L, Sica F (2009) Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant. Protein Sci 18:50–57

    PubMed  CAS  Google Scholar 

  • Messmann RA, Vitetta ES, Headlee D, Senderowicz AM, Figg WD, Schindler J, Michiel DF, Creekmore S, Steinberg SM, Kohler D, Jaffe ES, Stetler-Stevenson M, Chen H, Ghetie V, Sausville EA (2000) A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res 6:1302–1313

    PubMed  CAS  Google Scholar 

  • Michaelis M, Cinatl J, Anand P, Rothweiler F, Kotchetkov R, von Deimling A, Doerr HW, Shogen K, Cinatl J Jr (2007) Onconase induces caspase-independent cell death in chemoresistant neuroblastoma cells. Cancer Lett 250:107–116

    Article  PubMed  CAS  Google Scholar 

  • Mikulski SM, Viera A, Ardelt W, Menduke H, Shogen K (1990a) Tamoxifen and trifluoroperazine (Stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumor activity. Cell Tissue Kinet 23:237–246

    PubMed  CAS  Google Scholar 

  • Mikulski SM, Ardelt W, Shogen K, Bernstein EH, Menduke H (1990b) Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J Natl Cancer Inst 82:151–153

    Article  PubMed  CAS  Google Scholar 

  • Mikulski SM, Viera A, Shogen K (1992a) In vitro synergism between a novel amphibian oocytic ribonuclease (ONCONASE) and tamoxifen, lovastatin and cisplatin, in human OVCAR-3 ovarian carcinoma cell line. Int J Oncol 1:779–785

    PubMed  CAS  Google Scholar 

  • Mikulski SM, Viera A, Darzynkiewicz Z, Shogen K (1992b) Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br J Cancer 66:304–310

    Article  PubMed  CAS  Google Scholar 

  • Mikulski SM, Viera A, Shogen K (1993a) Human tumor cell growth modulatory effects of the AEBS/HIC-binding drugs. Int J Oncol 2:807–813

    PubMed  CAS  Google Scholar 

  • Mikulski SM, Grossman A, Carter P, Shogen K, Costanzi J (1993b) Phase I human clinical trial of ONCONASE (P-30 protein) administered intravenously on a weekly schedule in cancer patients with solid tumors. Int J Oncol 3:8

    Google Scholar 

  • Mikulski SM, Chun H, Mittelman A, Panella T, Puccio C, Shogen K, Costanzi J (1995) Relationship between response rate and median survival in patients with advanced non-small cell lung cancer: comparison of ONCONASE® with other anticancer agents. Int J Oncol 6:889–897

    PubMed  CAS  Google Scholar 

  • Mikulski SM, Viera A, Deptala A, Darzynkiewicz Z (1998) Enhanced in vitro cytotoxicity and cytostasis of the combination of onconase with a proteasome inhibitor. Int J Oncol 13:633–644

    PubMed  CAS  Google Scholar 

  • Mikulski SM, Newton DL, Wiltrout RH, Rybak SM (1999) A new anticancer RNase (onconase): clinical trial in patients (pts) with breast cancer (BC). Proc Am Assoc Cancer Res (AACR) 40: Abstract 3246

    Google Scholar 

  • Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, Mittelman A, Panella T, Puccio C, Fine R, Shogen K (2002) Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol 20:274–281

    Article  PubMed  CAS  Google Scholar 

  • Monti DM, D’Alessio G (2004) Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity. J Biol Chem 279:39195–39198

    Article  PubMed  CAS  Google Scholar 

  • Mosimann SC, Ardelt W, James MN (1994) Refined 1.7 A X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity. J Mol Biol 236:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139:801–805

    PubMed  CAS  Google Scholar 

  • Murthy BS, Sirdeshmukh R (1992) Sensitivity of monomeric and dimeric forms of bovine seminal ribonuclease to human placental ribonuclease inhibitor. Biochem J 281(Pt 2):343–348

    PubMed  CAS  Google Scholar 

  • Murthy BS, De Lorenzo C, Piccoli R, D’Alessio G, Sirdeshmukh R (1996) Effects of protein RNase inhibitor and substrate on the quaternary structures of bovine seminal RNase. Biochemistry 35:3880–3885

    Article  PubMed  CAS  Google Scholar 

  • Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, Nogues MV (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 65:324–337

    Article  PubMed  CAS  Google Scholar 

  • Navarro S, Boix E, Cuchillo CM, Nogues MV (2010) Eosinophil-induced neurotoxicity: the role of eosinophil cationic protein/RNase 3. J Neuroimmunol 227:60–70

    Article  PubMed  CAS  Google Scholar 

  • Newton DL, Ilercil O, Laske DW, Oldfield E, Rybak SM, Youle RJ (1992) Cytotoxic ribonuclease chimeras. Targeted tumoricidal activity in vitro and in vivo. J Biol Chem 267:19572–19578

    PubMed  CAS  Google Scholar 

  • Newton DL, Nicholls PJ, Rybak SM, Youle RJ (1994) Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem 269:26739–26745

    PubMed  CAS  Google Scholar 

  • Newton DL, Pearson JW, Xue Y, Smith MR, Fogler WE, Mikulski SM, Alvord WG, Kung H-F, Longo DL, Rybak SM (1996) Anti-tumor ribonuclease combined with or conjugated to monoclonal antibody MRK16 overcomes multidrug resistance to vincristine in vitro and in vivo. Int J Oncol 8:1095–1104

    PubMed  CAS  Google Scholar 

  • Newton DL, Boque L, Wlodawer A, Huang CY, Rybak SM (1998) Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties. Biochemistry 37:5173–5183

    Article  PubMed  CAS  Google Scholar 

  • Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, Williams J, Hoogenboom HR, Raus JC, Meade HM, Rybak SM (1999) Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods 231:159–167

    Article  PubMed  CAS  Google Scholar 

  • Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM (2001) Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood 97:528–535

    Article  PubMed  CAS  Google Scholar 

  • Ng TB (2004) Peptides and proteins from fungi. Peptides 25:1055–1073

    Article  PubMed  CAS  Google Scholar 

  • Nikolovski Z, Buzon V, Ribo M, Moussaoui M, Vilanova M, Cuchillo CM, Cladera J, Nogues MV (2006) Thermal unfolding of eosinophil cationic protein/ribonuclease 3: a nonreversible process. Protein Sci 15:2816–2827

    Article  PubMed  CAS  Google Scholar 

  • Nitta K, Ozaki K, Ishikawa M, Furusawa S, Hosono M, Kawauchi H, Sasaki K, Takayanagi Y, Tsuiki S, Hakomori S (1994) Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res 54:920–927

    PubMed  CAS  Google Scholar 

  • Notomista E, Catanzano F, Graziano G, Dal Piaz F, Barone G, D’Alessio G, Di Donato A (2000) Onconase: an unusually stable protein. Biochemistry 39:8711–8718

    Article  PubMed  CAS  Google Scholar 

  • Notomista E, Catanzano F, Graziano G, Di Gaetano S, Barone G, Di Donato A (2001) Contribution of chain termini to the conformational stability and biological activity of onconase. Biochemistry 40:9097–9103

    Article  PubMed  CAS  Google Scholar 

  • Notomista E, Mancheno JM, Crescenzi O, Di Donato A, Gavilanes J, D’Alessio G (2006) The role of electrostatic interactions in the antitumor activity of dimeric RNases. FEBS J 273:3687–3697

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Iwama M, Ohgi K, Tsuji T, Irie M, Itagaki T, Kobayashi H, Inokuchi N (2002) Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. Biol Pharm Bull 25:722–727

    Article  PubMed  CAS  Google Scholar 

  • Okabe Y, Katayama N, Iwama M, Watanabe H, Ohgi K, Irie M, Nitta K, Kawauchi H, Takayanagi Y, Oyama F et al (1991) Comparative base specificity, stability, and lectin activity of two lectins from eggs of Rana catesbeiana and R. japonica and liver ribonuclease from R. catesbeiana. J Biochem 109:786–790

    PubMed  CAS  Google Scholar 

  • Olmo N, Turnay J, Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA (2001) Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem 268:2113–2123

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Willingham MC, FitzGerald DJ (1986) Immunotoxins. Cell 47:641–648

    Article  PubMed  CAS  Google Scholar 

  • Pavlakis N, Vogelzang NJ (2006) Ranpirnase–an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 6:391–399

    Article  PubMed  CAS  Google Scholar 

  • Piccoli R, Di Donato A, D’Alessio G (1988) Co-operativity in seminal ribonuclease function. Kinetic studies. Biochem J 253:329–336

    PubMed  CAS  Google Scholar 

  • Piccoli R, Tamburrini M, Piccialli G, Di Donato A, Parente A, D’Alessio G (1992) The dual-mode quaternary structure of seminal RNase. Proc Natl Acad Sci USA 89:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J, Matousek J, D’Alessio G (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci USA 96:7768–7773

    Article  PubMed  CAS  Google Scholar 

  • Porta C, Paglino C, Mutti L (2008) Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics 2:601–609

    PubMed  CAS  Google Scholar 

  • Pouckova P, Morbio M, Vottariello F, Laurents DV, Matousek J, Soucek J, Gotte G, Donadelli M, Costanzo C, Libonati M (2007) Cytotoxicity of polyspermine-ribonuclease A and polyspermine-dimeric ribonuclease A. Bioconjug Chem 18:1946–1955

    Article  PubMed  CAS  Google Scholar 

  • Pradeep L, Shin HC, Scheraga HA (2006) Correlation of folding kinetics with the number and isomerization states of prolines in three homologous proteins of the RNase family. FEBS Lett 580:5029–5032

    Article  PubMed  CAS  Google Scholar 

  • Psarras K, Ueda M, Yamamura T, Ozawa S, Kitajima M, Aiso S, Komatsu S, Seno M (1998) Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human ‘immunotoxin analog’ with cytotoxic properties against squamous cell carcinomas. Protein Eng 11:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Psarras K, Ueda M, Tanabe M, Kitajima M, Aiso S, Komatsu S, Seno M (2000) Targeting activated lymphocytes with an entirely human immunotoxin analogue: human pancreatic RNase1-human IL-2 fusion. Cytokine 12:786–790

    Article  PubMed  CAS  Google Scholar 

  • Puccio C, Mittelman A, Chun H, Costanzi J, Panella T, Coombe N, Shogen K, Mikulski S (1996) A new anticancer RNase (onconase): clinical trial in patients (pts) with breast cancer (BC). Proc Am Soc Clin Oncol (ASCO) 15: Abstract 242

    Google Scholar 

  • Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1066

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Nino ME (2007) Cytotoxic ribonuclease-based cancer therapies. Drugs Future 32:10

    Article  CAS  Google Scholar 

  • Ramos-Nino ME, Littenberg B (2008) A novel combination: ranpirnase and rosiglitazone induce a synergistic apoptotic effect by down-regulating Fra-1 and Survivin in cancer cells. Mol Cancer Ther 7:1871–1879

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Nino ME, Vianale G, Sabo-Attwood T, Mutti L, Porta C, Heintz N, Mossman BT (2005) Human mesothelioma cells exhibit tumor cell-specific differences in phosphatidylinositol 3-kinase/AKT activity that predict the efficacy of Onconase. Mol Cancer Ther 4:835–842

    Article  PubMed  CAS  Google Scholar 

  • Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    PubMed  CAS  Google Scholar 

  • Riccio G, Borriello M, D’Alessio G, De Lorenzo C (2008) A novel human antitumor dimeric immunoRNase. J Immunother 31:440–445

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Benito A, Tubert P, Castro J, Ribo M, Beaumelle B, Vilanova M (2006) A cytotoxic ribonuclease variant with a discontinuous nuclear localization signal constituted by basic residues scattered over three areas of the molecule. J Mol Biol 360:548–557

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Torrent G, Bosch M, Rayne F, Dubremetz JF, Ribo M, Benito A, Vilanova M, Beaumelle B (2007) Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci 120:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270:7876–7881

    Article  PubMed  CAS  Google Scholar 

  • Roth JS (1963) Ribonuclease activity and cancer: a review. Cancer Res 23:657–666

    PubMed  CAS  Google Scholar 

  • Roth JS, Juster H (1972) On the absence of ribonuclease inhibitor in rat liver nuclei. Biochim Biophys Acta 287:474–476

    Article  PubMed  CAS  Google Scholar 

  • Russo N, Antignani A, D’Alessio G (2000) In vitro evolution of a dimeric variant of human pancreatic ribonuclease. Biochemistry 39:3585–3591

    Article  PubMed  CAS  Google Scholar 

  • Rutkoski TJ, Raines RT (2008) Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr Pharm Biotechnol 9:185–189

    Article  PubMed  CAS  Google Scholar 

  • Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT (2005) Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 354:41–54

    Article  PubMed  CAS  Google Scholar 

  • Rutkoski TJ, Kink JA, Strong LE, Schilling CI, Raines RT (2010) Antitumor activity of ribonuclease multimers created by site-specific covalent tethering. Bioconjug Chem 21:1691–1702

    Article  PubMed  CAS  Google Scholar 

  • Rybak SM (2008) Antibody-onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol 9:226–230

    Article  PubMed  CAS  Google Scholar 

  • Rybak SM, Newton DL (2007) Immunotoxins and beyond: targeted RNases. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, pp 379–410

    Chapter  Google Scholar 

  • Rybak SM, Saxena SK, Ackerman EJ, Youle RJ (1991) Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem 266:21202–21207

    PubMed  CAS  Google Scholar 

  • Rybak SM, Hoogenboom HR, Meade HM, Raus JC, Schwartz D, Youle RJ (1992) Humanization of immunotoxins. Proc Natl Acad Sci USA 89:3165–3169

    Article  PubMed  CAS  Google Scholar 

  • Rybak SM, Newton DL, Mikulski SM, Viera A, Youle RJ (1993) Cytotoxic onconase and ribonuclease A chimeras: comparison and in vitro characterization. Drug Deliv 1:3–10

    Article  CAS  Google Scholar 

  • Rybak SM, Pearson JW, Fogler WE, Volker K, Spence SE, Newton DL, Mikulski SM, Ardelt W, Riggs CW, Kung HF, Longo DL (1996) Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst 88:747–753

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara F, Kawauchi H, Takayanagi G, Ise H (1979) Egg lectin of Rana japonica and its receptor glycoprotein of Ehrlich tumor cells. Cancer Res 39:1347–1352

    PubMed  CAS  Google Scholar 

  • Saxena SK, Shogen K, Ardelt W (2003) Onconase and its therapeutic potential. Lab Med 34:380–386

    Article  Google Scholar 

  • Saxena A, Saxena SK, Shogen K (2009) Effect of Onconase on double-stranded RNA in vitro. Anticancer Res 29:1067–1071

    PubMed  CAS  Google Scholar 

  • Schirrmann T, Krauss J, Arndt MA, Rybak SM, Dubel S (2009) Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 9:79–95

    Article  PubMed  CAS  Google Scholar 

  • Schulenburg C, Weininger U, Neumann P, Meiselbach H, Stubbs MT, Sticht H, Balbach J, Ulbrich-Hofmann R, Arnold U (2010) Impact of the C-terminal disulfide bond on the folding and stability of onconase. Chembiochem 11:978–986

    Article  PubMed  CAS  Google Scholar 

  • Sevcik J, Urbanikova L, Leland PA, Raines RT (2002) X-ray structure of two crystalline forms of a Streptomyces ribonuclease with cytotoxic activity. J Biol Chem 277:47325–47330

    Article  PubMed  CAS  Google Scholar 

  • Sinatra F, Callari D, Viola M, Longombardo MT, Patania M, Litrico L, Emmanuele G, Lanteri E, D’Alessandro N, Travali S (2000) Bovine seminal RNase induces apoptosis in normal proliferating lymphocytes. Int J Clin Lab Res 30:191–196

    Article  PubMed  CAS  Google Scholar 

  • Singh UP, Ardelt W, Saxena SK, Holloway DE, Vidunas E, Lee HS, Saxena A, Shogen K, Acharya KR (2007) Enzymatic and structural characterisation of amphinase, a novel cytotoxic ribonuclease from Rana pipiens oocytes. J Mol Biol 371:93–111

    Article  PubMed  CAS  Google Scholar 

  • Skvor J, Lipovova P, Pouckova P, Soucek J, Slavik T, Matousek J (2006) Effect of wheat leaf ribonuclease on tumor cells and tissues. Anticancer Drugs 17:815–823

    Article  PubMed  CAS  Google Scholar 

  • Slager J, Tyler B, Shikanov A, Domb AJ, Shogen K, Sidransky D, Brem H (2009) Local controlled delivery of anti-neoplastic RNAse to the brain. Pharm Res 26:1838–1846

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, Newton DL, Mikulski SM, Rybak SM (1999) Cell cycle-related differences in susceptibility of NIH/3 T3 cells to ribonucleases. Exp Cell Res 247:220–232

    Article  PubMed  CAS  Google Scholar 

  • Soucek J, Skvor J, Pouckova P, Matousek J, Slavik T (2006) Mung bean sprout (Phaseolus aureus) nuclease and its biological and antitumor effects. Neoplasma 53:402–409

    PubMed  CAS  Google Scholar 

  • Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Arciello A, Garbi C, Piccoli R, D’Alessio G, Vecchio G, Laccetti P, Santoro M (2003) Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis. J Clin Endocrinol Metab 88:2900–2907

    Article  PubMed  CAS  Google Scholar 

  • Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Piccoli R, Santoro M, D’Alessio G, Laccetti P, Vecchio G (2004) Highly selective toxic and proapoptotic effects of two dimeric ribonucleases on thyroid cancer cells compared to the effects of doxorubicin. Br J Cancer 90:270–277

    Article  PubMed  CAS  Google Scholar 

  • Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293 T-cells. Protein Expr Purif 28:211–219

    Article  PubMed  CAS  Google Scholar 

  • Suhasini AN, Sirdeshmukh R (2006) Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem 281:12201–12209

    Article  PubMed  CAS  Google Scholar 

  • Suhasini AN, Sirdeshmukh R (2007) Onconase action on tRNA(Lys3), the primer for HIV-1 reverse transcription. Biochem Biophys Res Commun 363:304–309

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Saxena SK, Boix E, Prill RJ, Vasandani VM, Ladner JE, Sung C, Youle RJ (1999) Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Nat Biotechnol 17:265–270

    Article  PubMed  CAS  Google Scholar 

  • Tafech A, Bassett T, Sparanese D, Lee CH (2006) Destroying RNA as a therapeutic approach. Curr Med Chem 13:863–881

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi T, Libonati M (1974) Action of ribonuclease BS-1 on a DNA-RNA hybrid. Biochem Biophys Res Commun 58:280–286

    Article  PubMed  CAS  Google Scholar 

  • Tarnowski GS, Kassel RL, Mountain IM, Blackburn P, Wilson G, Wang D (1976) Comparison of antitumor activities of pancreatic ribonuclease and its cross-linked dimer. Cancer Res 36:4074–4078

    PubMed  CAS  Google Scholar 

  • Telford IR, Kemp JF, Taylor EF, Yeaman MW (1959) Effect of ribonuclease on survival of ascites tumor bearing mice. Proc Soc Exp Biol Med 100:829–831

    PubMed  CAS  Google Scholar 

  • Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 46:720–733

    Article  PubMed  CAS  Google Scholar 

  • Torrent G, Benito A, Castro J, Ribo M, Vilanova M (2008) Contribution of the C30/C75 disulfide bond to the biological properties of onconase. Biol Chem 389:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Nogues MV, Boix E (2011) Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. J Mol Recognit 24:90–100

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Ardelt B, Hsieh TC, Darzynkiewicz Z, Shogen K, Wu JM (2004) Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol 25:1745–1752

    PubMed  CAS  Google Scholar 

  • Tubert P, Rodriguez M, Ribo M, Benito A, Vilanova M (2010) The nuclear transport capacity of a human-pancreatic ribonuclease variant is critical for its cytotoxicity. Invest New Drugs. doi:10.1007/s10637-010-9426-2

    PubMed  Google Scholar 

  • Turcotte RF, Raines RT (2008) Interaction of onconase with the human ribonuclease inhibitor protein. Biochem Biophys Res Commun 377:512–514

    Article  PubMed  CAS  Google Scholar 

  • Turcotte RF, Lavis LD, Raines RT (2009) Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J 276:3846–3857

    Article  PubMed  CAS  Google Scholar 

  • Vasandani VM, Wu YN, Mikulski SM, Youle RJ, Sung C (1996) Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Cancer Res 56:4180–4186

    PubMed  CAS  Google Scholar 

  • Vasandani VM, Burris JA, Sung C (1999a) Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol 44:164–169

    Article  PubMed  CAS  Google Scholar 

  • Vasandani VM, Castelli JC, Hott JS, Saxena S, Mikulski SM, Youle RJ (1999b) Interferon enhances the activity of the anticancer ribonuclease, onconase. J Interferon Cytokine Res 19:447–454

    Article  PubMed  CAS  Google Scholar 

  • Venge P, Bystrom J (1998) Eosinophil cationic protein (ECP). Int J Biochem Cell Biol 30:433–437

    Article  PubMed  CAS  Google Scholar 

  • Vescia S, Tramontano D, Augusti-Tocco G, D’Alessio G (1980) In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease. Cancer Res 40:3740–3744

    PubMed  CAS  Google Scholar 

  • Viola M, Libra M, Callari D, Sinatra F, Spada D, Noto D, Emmanuele G, Romano F, Averna M, Pezzino FM, Stivala F, Travali S (2005) Bovine seminal ribonuclease is cytotoxic for both malignant and normal telomerase-positive cells. Int J Oncol 27:1071–1077

    PubMed  CAS  Google Scholar 

  • Vogelzang NJ, Aklilu M, Stadler WM, Dumas MC, Mikulski SM (2001) A phase II trial of weekly intravenous ranpirnase (Onconase), a novel ribonuclease in patients with metastatic kidney cancer. Invest New Drugs 19:255–260

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Ng TB, Cheung RC, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PH, Xia LX, Ye XY, Jiang Y, Liu F (2010) Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 87:1221–1235

    Article  PubMed  CAS  Google Scholar 

  • Woo JH, Liu JS, Kang SH, Singh R, Park SK, Su Y, Ortiz J, Neville DM Jr, Willingham MC, Frankel AE (2008) GMP production and characterization of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1) for phase I/II clinical trials. Protein Expr Purif 58:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Mikulski SM, Ardelt W, Rybak SM, Youle RJ (1993) A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem 268:10686–10693

    PubMed  CAS  Google Scholar 

  • Wu Y, Saxena SK, Ardelt W, Gadina M, Mikulski SM, De Lorenzo C, D’Alessio G, Youle RJ (1995) A study of the intracellular routing of cytotoxic ribonucleases. J Biol Chem 270:17476–17481

    Article  PubMed  CAS  Google Scholar 

  • Yoon JM, Han SH, Kown OB, Kim SH, Park MH, Kim BK (1999) Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci 64:1435–1445

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H (2001) The ribonuclease T1 family. Methods Enzymol 341:28–41

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, D’Alessio G (1997) Antitumor RNases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 491–514

    Chapter  Google Scholar 

  • Zhao H, Ardelt B, Ardelt W, Shogen K, Darzynkiewicz Z (2008) The cytotoxic ribonuclease onconase targets RNA interference (siRNA). Cell Cycle 7:3258–3261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants BFU2009-06935 from MICINN (Spain) and GRCT04 from the University of Girona.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Ribó , Antoni Benito or Maria Vilanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribó, M., Benito, A., Vilanova, M. (2011). Antitumor Ribonucleases. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_3

Download citation

Publish with us

Policies and ethics