Skip to main content

Vertebrate Secretory (RNase A) Ribonucleases and Host Defense

  • Chapter
  • First Online:

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC))

Abstract

Bovine pancreatic ribonuclease, also known as RNase A, is the prototype of an extensive, multi-lineage family of vertebrate secretory proteins that share elements of structure and catalytic activity despite substantial functional divergence. In this review, we feature the RNase A family and its members that are implicated in promoting host defense – activities that include sustaining mucosal barriers, as well as participating in various aspects of innate and acquired immunity – and explore relationships linking gene evolution, enzymatic activity, and physiologic function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akagi K, Yamanaka M, Murai K, Niho Y, Omae T (1978) Serum acid ribonuclease in myelogenous leukemia. Cancer Res 38:2168–2173

    PubMed  CAS  Google Scholar 

  • Avdeeva SV, Chernukha MU, Shaginyan IA, Tarantul VZ, Naroditsky BS (2006) Human angiogenin lacks specific antimicrobial activity. Curr Microbiol 53:477–478

    Article  PubMed  CAS  Google Scholar 

  • Badet J (1999) Angiogenin, a potent mediator of angiogenesis. Biological, biochemical and structural properties. Pathol Biol Paris 47:345–351

    PubMed  CAS  Google Scholar 

  • Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Bañuelos K, Romo-Fewell O, Aroian RV, Traver D (2010) Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116:3944–3954

    Article  PubMed  CAS  Google Scholar 

  • Bando M, Hiroshima Y, Kataoka M, Shinohara Y, Herzberg MC, Ross KF, Nagata T, Kido J (2007) Interleukin-1alpha regulates antimicrobial peptide expression in human keratinocytes. Immunol Cell Biol 85:532–537

    Article  PubMed  CAS  Google Scholar 

  • Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR, Gleich GJ (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143:952–955

    PubMed  CAS  Google Scholar 

  • Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT (2006) Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res Hum Retroviruses 22:897–907

    Article  PubMed  CAS  Google Scholar 

  • Beintema JJ, Kleineidam RG (1998) The ribonuclease A superfamily: general discussion. Cell Mol Life Sci 54:825–832

    Article  PubMed  CAS  Google Scholar 

  • Beintema JJ, Schüller C, Irie M, Carsana A (1988) Molecular evolution of the RNase A superfamily. Prog Biophys Mol Biol 51:165–192

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Hindocha P (1974) Serum alkaline ribonuclease activity during pregnancy. Clin Chim Acta 51:285–289

    Article  PubMed  CAS  Google Scholar 

  • Boix E, Torrent M, Sanchez D, Nogues MV (2008) The anti-pathogen activities of eosinophil cationic protein. Curr Pharm Biotechnol 9:141–152

    Article  PubMed  CAS  Google Scholar 

  • Bosco DA, Landers JE (2010) Genetic determinants of amyotrophic lateral sclerosis as therapeutic targets. CNS Neurol Disord Drug Targets 9:779–790

    Article  PubMed  CAS  Google Scholar 

  • Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV (2003) Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42:6636–6644

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Zhang J (2007) Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily. Mol Biol Evol 24:1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Cormier SA, Yuan S, Crosby JR, Protheroe CA, Dimina DM, Hines EM, Lee NA, Lee JJ (2002) T(H)2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages. Am J Respir Cell Mol Biol 27:678–687

    PubMed  CAS  Google Scholar 

  • Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Durack DT, Ackerman SJ, Loegering DA, Gleich GJ (1981) Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci USA 78:5165–5169

    Article  PubMed  CAS  Google Scholar 

  • Dyer KD, Rosenberg HF (2006) The RNase A superfamily: generation of diversity and innate host defense. Mol Divers 10:585–597

    Article  PubMed  CAS  Google Scholar 

  • Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    PubMed  CAS  Google Scholar 

  • Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mayoral MF, Moussaoui M, de la Torre BG, Andrewu D, Boix E, Nogues MV, Rico M, Laurents DV, Bruix M (2010) NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J 98:2702–2711

    Article  PubMed  CAS  Google Scholar 

  • Garvey TL, Dyer KD, Ellis JA, Bonville CA, Foster B, Prussin C, Easton AJ, Domachowske JB, Rosenberg HF (2005) Inflammatory responses to pneumovirus infection in IFNabR gene-deleted mice. J Immunol 175:4735–4744

    PubMed  CAS  Google Scholar 

  • Gaudreault E, Gosselin J (2007) Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol 20:407–420

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault E, Gosselin J (2008) Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J Immunol 180:6211–6221

    PubMed  CAS  Google Scholar 

  • Gläser R, Navid F, Schuller W, Jantschitsch C, Harder J, Schröder JM, Schwarz A, Schwarz T (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J Allergy Clin Immunol 123:1117–1123

    Article  PubMed  Google Scholar 

  • Gleich GJ, Loegering DA (1984) The immunobiology of eosinophils. Annu Rev Immunol 2:429–459

    Article  PubMed  CAS  Google Scholar 

  • Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci USA 83:3146–3150

    Article  PubMed  CAS  Google Scholar 

  • Hamann KJ, Barker RL, Loegering DA, Pease LR, Gleich GJ (1989) Sequence of human eosinophil-derived neurotoxin cDNA: identity of deduced amino acid sequence with human nonsecretory ribonucleases. Gene 83:161–167

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Schroeder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  PubMed  CAS  Google Scholar 

  • Huang YC, Lin YM, Chang TW, Wu SJ, Lee YS, Chang MD, Chen C, Wu SH, Liao YD (2007) The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem 282:4626–4633

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Asai K, Nakajima M, Mue S, Ohuchi K (2003) Preparation of recombinant rat eosinophil-associated ribonuclease-1 and 2 and analysis of their biological activities. Biochim Biophys Acta 1638:164–172

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen EA, Taranova AG, Lee NA, Lee JJ (2007) Eosinophils: Singularly destructive effector cells or purveyors of immunoregulation? J Allergy Clin Immunol 119:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Jacoby DB (2004) Pathophysiology of airway viral infections. Pulm Pharmacol Ther 17:333–336

    Article  PubMed  CAS  Google Scholar 

  • Kazakou K, Holloway DE, Prior SH, Subramanian V, Acharya KR (2008) Ribonculease A homologues of the zebrafish: polymorphism, crystal structures of the two representatives and their evolutionary implications. J Mol Biol 380:206–222

    Article  PubMed  CAS  Google Scholar 

  • Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    Article  PubMed  CAS  Google Scholar 

  • Köten B, Simanski M, Gläser R, Podschun R, Schröder JM, Harder J (2009) RNase 7 contributes to the cutaneous defense against Enterococcus faecium. PLoS One 4:e6424

    Article  PubMed  Google Scholar 

  • Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24(20):5494–5499

    Article  PubMed  CAS  Google Scholar 

  • Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, McLachlan SM, Adams JS, Hewison M (2010) Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 151:2423–2432

    Article  PubMed  CAS  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Larson KA, Olson EV, Madden BJ, Gleich GJ, Lee NA, Lee JJ (1996) Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc Natl Acad Sci USA 93:12370–12375

    Article  PubMed  CAS  Google Scholar 

  • Lin YM, Wu SJ, Chang TW, Wang CF, Suen CS, Hwang MJ, Chang MD, Chen YT, Liao YD (2010) Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J Biol Chem 285:8985–8994

    Article  PubMed  CAS  Google Scholar 

  • Maor D, Mardiney MR Jr (1978) Alteration of human serum ribonuclease activity in malignancy. CRC Crit Rev Clin Lab Sci 10:89–111

    Article  PubMed  CAS  Google Scholar 

  • Marshall JGR, Feng JA, Kuster DJ (2008) Back to the future: ribonuclease A. Biopolymers 90:259–277

    Article  PubMed  CAS  Google Scholar 

  • Moenner M, Gusse M, Hatzi E, Badet J (1994) The widespread expression of angiogenin in different human cells suggests a biological function not only related to angiogenesis. Eur J Biochem 226:483–490

    Article  PubMed  CAS  Google Scholar 

  • Mohammed I, Yeung A, Abedin A, Hopkinson A, Dua HS (2010) Signalling pathways involved in ribonuclease-7 expression. Cell Mol Life Sci 68:1941–1952

    Google Scholar 

  • Moreau JM, Dyer KD, Bonville CA, Nitto T, Vasquez NL, Easton AJ, Domachowske JB, Rosenberg HF (2003) Diminished expression of an antiviral ribonuclease in response to pneumovirus expression in vivo. Antiviral Res 59:181–191

    Article  PubMed  CAS  Google Scholar 

  • Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, Nogues MV (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 65:324–337

    Article  PubMed  CAS  Google Scholar 

  • Nitto T, Dyer KD, Mejia RA, Byström J, Wynn TA, Rosenberg HF (2004) Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo. Genes Immun 5:668–674

    Article  PubMed  CAS  Google Scholar 

  • Nitto T, Dyer KD, Czapiga M, Rosenberg HF (2006) Evolution and function of leukocyte RNase A ribonucleases of the avian species Gallus gallus. J Biol Chem 281:25622–25634

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365

    Article  PubMed  CAS  Google Scholar 

  • Peterson LM (1979) Serum RNase in the diagnosis of pancreatic carcinoma. Proc Natl Acad Sci USA 76:2630–2634

    Article  PubMed  CAS  Google Scholar 

  • Pizzo E, D’Alessio G (2007) The success of the RNase scaffold in the advance of biosciences and in evolution. Gene 406:8–12

    Article  PubMed  CAS  Google Scholar 

  • Pizzo E, Buonanno P, Di Maro A, Ponticelli S, De Falco S, Quarto N, Cubellis MV, D’Alessio G (2006) Ribonucelases and angiogenins from fish. J Biol Chem 281:27454–27460

    Article  PubMed  CAS  Google Scholar 

  • Pizzo E, Varcamonti M, Di Maro A, Zanfardino A, Giancola C, D’Alessio G (2008) Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon. FEBS J 275:1283–1295

    Article  PubMed  CAS  Google Scholar 

  • Pizzo E, Merlino A, Turano M, Russo Krauss I, Coscia F, Zanfardino A, Varcamonti M, Furia A, Giancola C, Mazzarella L, Sica F, D’Alessio G (2010) A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish. Biochem J 433:345–355

    Article  Google Scholar 

  • Quarto N, Pizzo E, D’Alessio G (2008) Temporal and spatial expression of RNases from zebrafish (Danio rerio). Gene 427:32–41

    Article  PubMed  CAS  Google Scholar 

  • Reddi KK, Holland JF (1976) Elevated serum ribonuclease in patients with pancreatic cancer. Proc Natl Acad Sci USA 73:2308–2310

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270:7876–7881

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF (2008a) RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 83:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF (2008b) Eosinophil-derived neurotoxin/RNase 2: connecting the past, the present and the future. Curr Pharm Biotechnol 9(3):135–140

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Dyer KD (1995) Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem 270:21539–21544

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Tenen DG, Ackerman SJ (1989a) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci USA 86:4460–4464

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Ackerman SJ, Tenen DG (1989b) Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med 170:163–176

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Dyer KD, Tiffany HL, Gonzalez M (1995) Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet 10:219–223

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Phipps S, Foster PS (2007) Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 119:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 83:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rudolph B, Podschun R, Sahly H, Schubert S, Schröder JM, Harder J (2006) Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 50:3194–3196

    Article  PubMed  CAS  Google Scholar 

  • Rugeles MT, Trubey CM, Bedoya VI, Pinto LA, Oppenheim JJ, Rybak SM, Shearer GM (2003) Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17:481–486

    Article  PubMed  CAS  Google Scholar 

  • Sanchez D, Moussaoui M, Carreras E, Torrent M, Nogues MV, Boix E (2010) Mapping the eosinophil cationic protein antimicrobial activity by chemical and enzymatic cleavage. Biochimie 93:331–338

    Article  PubMed  Google Scholar 

  • Simanski M, Dressel S, Gläser R, Harder J (2010) RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol 130:2836–2838

    Article  PubMed  CAS  Google Scholar 

  • Slifman NR, Loegering DA, McKean DJ, Gleich GJ (1986) Ribonuclease activity associated with eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137:2913–2917

    PubMed  CAS  Google Scholar 

  • Sorrentino S (2010) The eight human “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 584:2194–2200

    Article  PubMed  CAS  Google Scholar 

  • Strydom DJ (1998) The angiogenins. Cell Mol Life Sci 54:811–824

    Article  PubMed  CAS  Google Scholar 

  • Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Amino acid sequence of human tumor derived angiogenin. Biochemistry 24:5486–5494

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 46:720–733

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Navarro S, Moussaoui M, Nogues MV, Boix E (2008) Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47:3544–3555

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, de la Torre BG, Nogues MV, Andreu D, Boix E (2009a) Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem J 421:425–434

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Sánchez D, Buzón V, Nogués MV, Cladera J, Boix E (2009b) Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim Biophys Acta 1788:1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Badia M, Moussaoui M, Sánchez D, Nogués MV, Boix E (2010a) Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. FEBS J 277:1713–1725

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Nogues MV, Boix E (2010b) Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through tis RNase active site. J Mol Recognit 24:90–100

    Article  Google Scholar 

  • Venge P, Håkansson L, Peterson CG (1987) Eosinophil activation in allergic disease. Int Arch Allergy Appl Immunol 82(3–4):333–337

    Article  PubMed  CAS  Google Scholar 

  • Welling GW, Leijenaar-van den Berg G, van Dijk B, van den Berg A, Groen G, Gaastra W, Emmens M, Beintema JJ (1975) Evolution of mammalian pancreatic ribonucleases. Biosystems 6:239–245

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102:3396–3403

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B, Kingsmore SF, Patel DD, Oppenheim JJ, Howard OM (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    Article  PubMed  CAS  Google Scholar 

  • Young JD, Peterson CG, Venge P, Cohn ZA (1986) Mechansim of membrane damage mediated by human eosinophil cationic protein. Nature 321:613–616

    Article  PubMed  CAS  Google Scholar 

  • Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Article  PubMed  CAS  Google Scholar 

  • Zanfardino A, Pizzo E, Di Maro A, Varcamonti M, D’Alessio G (2010) The bactericidal action on Escherichia coli of ZF-RNase-3 is triggered by the suicidal action of the bacterium OmpT protease. FEBS J 277:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Zanger P, Holzer J, Schleucher R, Steffen H, Schittek B, Gabrysch S (2009) Constitutive expression of the antimicrobial peptide RNase 7 is associated with Staphylococcus aureus infection of the skin. J Infect Dis 200:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dyer KD, Rosenberg HF (2000) Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA 97:4701–4706

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dyer KD, Rosenberg HF (2002) RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 30:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dyer KD, Rosenberg HF (2003) Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 31:602–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ongoing work in our laboratory is supported by funds from the NIAID Division of Intramural Research, Project AI000942.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene F. Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenberg, H.F. (2011). Vertebrate Secretory (RNase A) Ribonucleases and Host Defense. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_2

Download citation

Publish with us

Policies and ethics