Skip to main content

Ribonucleoprotein Ribonucleases P and MRP

  • Chapter
  • First Online:
Ribonucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC))

Abstract

Ribonucleoprotein Ribonuclease (RNase) P and RNase MRP consist of a large RNA component and an essential protein part. RNases P/MRP differ from all other known ribonucleases in that it is their RNA component, not protein that is responsible for the endonucleolytic cleavage of substrates. RNase P is universally essential in all three domains of life; the closely related RNase MRP is a ubiquitous eukaryotic enzyme. RNase P is primarily responsible for the maturation of the 5′-ends of tRNA, whereas RNase MRP is known to be involved in the maturation of eukaryotic rRNA and the degradation of specific mRNAs. Here we discuss available information on functions, structural organization, and mechanisms of substrate recognition and catalysis of RNases P/MRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS (1994) Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8:3021–3031

    Article  CAS  PubMed  Google Scholar 

  • Altman S (2010) History of RNase P and overview of its catalytic activity. In: Liu F, Altman S (eds) Ribonuclease P. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Altman S, Smith JD (1971) Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol 233:35–39

    CAS  PubMed  Google Scholar 

  • Altman S, Wesolowski D, Guerrier-Takada C, Li Y (2005) RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci 102:11284–11289

    Article  CAS  PubMed  Google Scholar 

  • Amero CD, Boomershine WP, Xu Y, Foster M (2008) Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner. Biochemistry 47:11704–11710

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Lakshminarayan MI, Anantharaman V (2003) The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 4:R64

    Article  CAS  PubMed  Google Scholar 

  • Aspinall TV, Gordon JMB, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM (2007) Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 35:6439–6450

    Article  CAS  PubMed  Google Scholar 

  • Bonafe L, Dermitzakis ET, Unger S, Greenberg CR, Campos-Xavier BA, Zankl A, Ucla C, Antonarakis SE, Superti-Furga A, Reymond A (2005) Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet 1:e47

    Article  PubMed  CAS  Google Scholar 

  • Boomershine WP, McElroy CA, Tsai HY, Wilson RC, Gopalan V, Foster MP (2003) Structure of Mth11/Mth Rpp 29, an essential protein subunit of archaeal and eukaryotic RNase P. Proc Natl Acad Sci 100:15398–15403

    Article  CAS  PubMed  Google Scholar 

  • Bowman LH, Goldman WE, Goldberg GI, Hebert MB, Schlessinger D (1983) Location of the initial cleavage sites in mouse pre-rRNA. Mol Cell Biol 3:1501–1510

    CAS  PubMed  Google Scholar 

  • Brown JW, Haas ES, James BD, Hunt DA, Liu JS, Pace NR (1991) Phylogenetic analysis and evolution of RNase P RNA in proteobacteria. J Bacteriol 173:3855–3863

    CAS  PubMed  Google Scholar 

  • Brown JW, Pace NR (1992) Ribonuclease P RNA and protein subunits from bacteria. Nucleic Acids Res 20:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Brown JW, Nolan JM, Haas ES, Rubio MAT, Major F, Pace NR (1996) Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci 93:3001–3006

    Article  CAS  PubMed  Google Scholar 

  • Brown JW (1999) The ribonuclease P database. Nucleic Acids Res 27:314

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Kirsebom LA, Notbohm H, Hartmann RK (2000) Differential role of the intermolecular base-pairs G292-C75 and G293-C74 in the reaction catalyzed by Escherichia coli RNase P RNA. J Mol Biol 299:941–951

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Reilly TR, Cerio M, Schmitt ME (1999) Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol Cell Biol 19:7857–7869

    CAS  PubMed  Google Scholar 

  • Cai T, Aulds J, Gill T, Cerio M, Schmitt ME (2002) The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis. Genetics 161:1029–1042

    CAS  PubMed  Google Scholar 

  • Chamberlain JR, Lee Y, Lane WS, Engelke DR (1998) Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 12:1678–1690

    Article  CAS  PubMed  Google Scholar 

  • Chang DD, Clayton DA (1987) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 6:409–417

    CAS  PubMed  Google Scholar 

  • Chen JL, Pace NR (1997) Identification of the universally conserved core of ribonuclease P RNA. RNA 3:557–560

    CAS  PubMed  Google Scholar 

  • Cho IM, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V (2010) Ribosomal protein L7Ae is a subunit of archaeal RNase P. Proc Natl Acad Sci 107:14573–14578

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Archer RH, Zengel JM, Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci 91:659–663

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Zengel JM, Lindahl L (1997) A novel protein shared by RNase MRP and RNase P. RNA 3:382–391

    CAS  PubMed  Google Scholar 

  • Clayton DA (1994) A nuclear function for RNase MRP. Proc Natl Acad Sci 91:4615–4617

    Article  CAS  PubMed  Google Scholar 

  • Coughlin DJ, Pleiss JA, Walker SC, Whitworth GB, Engelke DR (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation on intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci 105:12218–12223

    Article  CAS  PubMed  Google Scholar 

  • Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37:9409–9416

    Article  CAS  PubMed  Google Scholar 

  • Dichtl B, Tollervey D (1997) Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins in vivo. EMBO J 16:417–429

    Article  CAS  PubMed  Google Scholar 

  • Esakova O, Perederina A, Quan C, Schmitt ME, Krasilnikov AS (2008) Footprinting analysis demonstrates extensive similarity between eukaryotic RNase P and RNase MRP holoenzymes. RNA 14:1558–1567

    Article  CAS  PubMed  Google Scholar 

  • Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  CAS  PubMed  Google Scholar 

  • Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov AS (2011) Substrate selection by ribonucleoprotein RNase MRP. RNA 17:356–364. doi:10.1261/rna.2393711

    Article  CAS  PubMed  Google Scholar 

  • Frank DN, Adamidi C, Ehringer MA, Pitulle C, Pace NR (2000) Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. RNA 6:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T, Numata T, Kakuta Y, Kimura M (2006) A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 343:956–964

    Article  CAS  PubMed  Google Scholar 

  • Gegenheimer P (1996) Structure, mechanism and evolution of chloroplast transfer RNA processing systems. Mol Biol Rep 22:147–150

    Article  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Gill T, Cai T, Aulds J, Wierzbicki S, Schmitt ME (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24:945–953

    Article  CAS  PubMed  Google Scholar 

  • Gill T, Aulds J, Schmitt ME (2006) A specialized processing body that is temporally and asymmetrically regulated during the cell cycle in Saccharomyces cerevisiae. J Cell Biol 173:35–45

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Gutmann B, Taschner A, Gossringer M, Holzmann J, Hartmann RK, Rossmanith W, Giege P (2010) A single Arabidopsis organellar protein has RNase P activity. Nat Struct Mol Biol 17:740–744

    Article  CAS  PubMed  Google Scholar 

  • Gossringer M, Far RKK, Hartmann RK (2006) Analysis of RNase P protein (rnpA) expression in Bacillus subtilis utilizing strains with suppressible rnpA expression. J Bacteriol 188:6816–6823

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Altman S (1984a) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223:285–286

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Altman S (1984b) Structure in solution of M1 RNA, the catalytic subunit of ribonuclease P from Escherichia coli. Biochemistry 23:6327–6334

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, McClain WH, Altman S (1984) Cleavage of tRNA precursors by the RNA subunit of E. coli ribonuclease P (M1 RNA) is influenced by 3′-proximal CCA in substrates. Cell 38:219–224

    Article  CAS  PubMed  Google Scholar 

  • Haas ES, Morse DP, Brown JW, Schmidt FJ, Pace NR (1991) Long-range structure in ribonuclease P RNA. Science 254:853–856

    Article  CAS  PubMed  Google Scholar 

  • Haas ES, Brown JW, Pitulle C, Pace NR (1994) Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc Natl Acad Sci 91:2527–2531

    Article  CAS  PubMed  Google Scholar 

  • Haas ES, Banta AB, Harris JK, Pace NR, Brown JW (1996a) Structure and evolution of ribonuclease P RNA in gram-positive bacteria. Nucleic Acids Res 24:4775–4782

    Article  CAS  PubMed  Google Scholar 

  • Haas ES, Armbruster DW, Vucson BM, Daniels CJ, Brown JW (1996b) Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res 24:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Hall TA, Brown JW (2002) Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA 8:296–306

    Article  CAS  PubMed  Google Scholar 

  • Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR (2010) Heteromerization of the human RNase P/MRP subunits Rpp 20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 38:4052–4066

    Article  CAS  PubMed  Google Scholar 

  • Harris JK, Haas ES, Williams D, Frank DN, Brown JW (2001) New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. RNA 7:220–232

    Article  CAS  PubMed  Google Scholar 

  • Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19:561–569

    Article  CAS  PubMed  Google Scholar 

  • Heide C, Pfeiffer T, Nolan JM, Hartmann RK (1999) Guanosine 2-NH2 groups of Escherichia coli RNase P RNA involved in intermolecular tertiary contacts and direct interactions with tRNA. RNA 5:102–116

    Article  CAS  PubMed  Google Scholar 

  • Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D (1994) The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 13:2452–2463

    CAS  PubMed  Google Scholar 

  • Hermanns P, Bertuch AA, Bertin TK, Dawson B, Schmitt ME, Shaw C, Zabel B, Lee B (2005) Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Human Mol Genet 14:3723–3740

    Article  CAS  Google Scholar 

  • Hermanns P, Tran A, Munivez E, Carter S, Zabel B, Lee B, Leroy JG (2006) RMRP mutations in cartilage-hair hypoplasia. Am J Med Genet 140A:2121–2130

    Article  CAS  Google Scholar 

  • Hirose Y, Nakashima E, Ohashi H, Mochizuki H, Bando Y, Ogata T, Adachi M, Toba E, Nishimura G, Ikegawa S (2006) Identification of novel RMRP mutations and specific founder haplotypes in Japanese patients with cartilage-hair hypoplasia. J Hum Genet 51:706–710

    Article  CAS  PubMed  Google Scholar 

  • Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  CAS  PubMed  Google Scholar 

  • Holzmann J, Rossmanith W (2009) tRNA recognition, processing, and disease: hypotheses around an unorthodox type of RNase P in human mitochondria. Mitochondrion 9:284–288

    Article  CAS  PubMed  Google Scholar 

  • Honda T, Hara T, Nan J, Zhang X, Kimura M (2010) Archaeal homologs of human RNase P protein pairs Pop5 with Rpp 30 and Rpp21 with Rpp29 work on distinct functional domains of the RNA subunit. Biosci Biotechnol Biochem 74:266–273

    Article  CAS  PubMed  Google Scholar 

  • Houser-Scott F, Xiao S, Millikin CE, Zengel JM, Lindahl L, Engelke DR (2002) Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci 99:2684–2689

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J, Fierke CA (2009) Conformational change in the Bacillus subtilis RNase P holoenzyme-pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA 15:1565–1577

    Article  CAS  PubMed  Google Scholar 

  • James BD, Olsen GJ, Liu J, Pace NR (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52:19–26

    Article  CAS  PubMed  Google Scholar 

  • Jarrous N, Reiner R (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35:3519–3524

    Article  CAS  PubMed  Google Scholar 

  • Jarrous N, Gopalan V (2010) Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 38:7885–7894

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Altman S (2001) Protein-protein interactions with subunits of human nuclear RNase P. Proc Natl Acad Sci 98:920–925

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Guerrier-Takada C, Altman S (2001) Protein-RNA interactions in the subunits of human nuclear RNase P. RNA 7:937–941

    Article  CAS  PubMed  Google Scholar 

  • Kakuta Y, Ishimatsu I, Numata T, Kimura K, Yao M, Tanaka I, Kimura M (2005) Crystal structure of a ribonuclease P protein Ph1601p from Pyrococcus horikoshii OT3: an archaeal homologue of human nuclear ribonuclease P protein Rpp 21. Biochemistry 44:12086–12093

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ, Carter RJ, Holbrook SR, Adams PD, Pace NR (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci 100:7497–7502

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci 102:13392–13397

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Krivenko AA, Pace NR (2009) Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15:266–276

    Article  CAS  PubMed  Google Scholar 

  • Kikovska E, Svard SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci 104:2062–2067

    Article  CAS  PubMed  Google Scholar 

  • Kirsebom LA, Svard SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13:4870–4876

    CAS  PubMed  Google Scholar 

  • Kirsebom LA, Baer MF, Altman S (1988) Differential effects of mutations in the protein and RNA moieties of RNase P on the efficiency of suppression by various tRNA suppressors. J Mol Biol 204:879–888

    Article  CAS  PubMed  Google Scholar 

  • Kirsebom LA, Trobro S (2009) RNase P RNA-mediated cleavage. IUBMB Life 61:189–200

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Altman S (2007) OLE RNA, an RNA motif that is highly conserved in several extremophilic bacteria, is a substrate for and can be regulated by RNase P RNA. Proc Natl Acad Sci 104:7815–7820

    Article  CAS  PubMed  Google Scholar 

  • Kole R, Altman S (1979) Reconstitution of RNase P activity from inactive RNA and protein. Proc Natl Acad Sci 76:3795–3799

    Article  CAS  PubMed  Google Scholar 

  • Kole R, Baer MF, Stark BC, Altman S (1980) E. coli RNAase P has a required RNA component in vivo. Cell 19:881–887

    Article  CAS  PubMed  Google Scholar 

  • Kole R, Altman S (1981) Properties of purified Ribonuclease P from Escherichia coli. Biochemistry 20:1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Koutmou KS, Zahler NH, Kurz JC, Campbell FE, Harris ME, Fierke CA (2010) Protein-precursor tRNA contact leads to sequence-specific recognition of 5′ leaders by bacterial ribonuclease P. J Mol Biol 396:195–208

    Article  CAS  PubMed  Google Scholar 

  • Kouzuma Y, Mizoguchi M, Takagi H, Fukuhara H, Tsukamoto M, Numata T, Kimura M (2003) Reconstitution of archaeal ribonuclease P from RNA and four protein components. Biochem Biophys Res Commun 306:666–673

    Article  CAS  PubMed  Google Scholar 

  • Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci 91:9223–9227

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikov AS, Mondragon A (2003) On the occurrence of the T-loop RNA folding motif in large RNA molecules. RNA 9:640–643

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikov AS, Yang X, Pan T, Mondragon A (2003) Crystal structure of the specificity domain of ribonuclease P. Nature 421:760–764

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikov AS, Xiao Y, Pan T, Mondragon A (2004) Basis for structural diversity in homologous RNAs. Science 306:104–107

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers TW, Ridanpaa M, Peters M, Boer I, Vossen JMJJ, Pals ST, Kaitila I, Hennekam RCM (2003) Short-limbed dwarfism with bowing, combined immune deficiency, and late onset aplastic anaemia caused by novel mutations in the RMRP gene. J Med Genet 40:761–766

    Article  CAS  PubMed  Google Scholar 

  • Kurz JC, Niranjanakumari S, Fierke CA (1998) Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 37:2393–2400

    Article  CAS  PubMed  Google Scholar 

  • LaGrandeur TE, Huttenhofer A, Noller HF, Pace NR (1994) Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 13:3945–3952

    CAS  PubMed  Google Scholar 

  • Lai LB, Chan PP, Cozen AE, Bernick DL, Brown JW, Gopalan V, Lowe TM (2010) Discovery of a minimal form of RNase P in Pyrobaculum. Proc Natl Acad Sci 107:22493–22498

    Google Scholar 

  • Li D, Willkomm DK, Hartmann RK (2009) Minor changes largely restore catalytic activity of archaeal RNase P RNA from Methanothermobacter thermoautotrophicus. Nucleic Acids Res 37:231–242

    Article  CAS  PubMed  Google Scholar 

  • Li X, Frank DN, Pace NR, Zengel JM, Lindahl L (2002) Phylogenetic analysis of the structure of RNase MRP RNA in yeasts. RNA 8:740–751

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Altman S (2003) A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci 100:13213–13218

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Altman S (2004) Polarity effects in the lactose operon of Escherichia coli. J Mol Biol 339:31–39

    Article  CAS  PubMed  Google Scholar 

  • Lindahl L, Fretz S, Epps N, Zengel JM (2000) Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA 6:653–658

    Article  CAS  PubMed  Google Scholar 

  • Lindahl L, Bommankanti A, Li X, Hayden L, Jones A, Khan M, Oni T, Zengel JM (2009) RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway. RNA 15:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Lopez MD, Rosenblad MA, Samuelsson T (2009) Conserved and variable domains of RNase MRP RNA. RNA Biol 6:208–220

    Article  CAS  Google Scholar 

  • Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2:551–563

    CAS  PubMed  Google Scholar 

  • Loria A, Pan T (1997) Recognition of the T stem-loop of pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36:6317–6325

    Article  CAS  PubMed  Google Scholar 

  • Loria A, Pan T (1999) The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry 38:8612–8620

    Article  CAS  PubMed  Google Scholar 

  • Loria A, Pan T (2001) Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res 29:1892–1897

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Wierzbicki S, Krasilnikov AS, Schmitt ME (2010) Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components. RNA 16:529–537

    Article  CAS  PubMed  Google Scholar 

  • Lygerou Z, Mitchell P, Petfalski E, Seraphin B, Tollervey D (1994) The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 8:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Lygerou Z, Allmang C, Tollervey D, Seraphin B (1996) Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270

    Article  CAS  PubMed  Google Scholar 

  • Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235

    Article  CAS  PubMed  Google Scholar 

  • Marquez SM, Chen JL, Evans D, Pace NR (2006) Structure and function of eukaryotic Ribonuclease P RNA. Mol Cell 24:445–456

    Article  CAS  PubMed  Google Scholar 

  • Marvin MC, Engelke DR (2009) Broadening the mission of an RNA enzyme. J Cell Biochem 108:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Masquida B, Jossinet F, Westhof E (2010) Over a decade of bacterial ribonuclease P modeling. In: Liu F, Altman S (eds) Ribonuclease P. Springer, New York, pp 41–62

    Chapter  Google Scholar 

  • Martin AN, Li Y (2007) RNase MRP RNA and human genetic diseases. Cell Res 17:219–226

    CAS  PubMed  Google Scholar 

  • McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238:527–530

    Article  CAS  PubMed  Google Scholar 

  • Mobley EM, Pan T (1999) Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Nucleic Acids Res 27:4298–4304

    Article  CAS  PubMed  Google Scholar 

  • Mondragon A (2010) Structural studies of ribonuclease P. In: Liu F, Altman S (eds) Ribonuclease P. Springer, New York, pp 63–78

    Chapter  Google Scholar 

  • Nakashima E, Tran JR, Welting TJM, Pruijn GJM, Hirose Y, Nishimura G, Ohashi H, Schurman SH, Cheng J, Candotti F, Nagaraja R, Ikegawa S, Schlessinger D (2007) Cartilage hair hypoplasia mutations that lead to RMRP promoter inefficiency of RNA transcript instability. Am J Med Genet 143A:2675–2681

    Article  CAS  PubMed  Google Scholar 

  • Nieuwlandt DT, Haas ES, Daniels CJ (1991) The RNA component of RNase P from archaebacterium Haloferax volcanii. J Biol Chem 266:5689–5695

    CAS  PubMed  Google Scholar 

  • Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci 95:15212–15217

    Article  CAS  PubMed  Google Scholar 

  • Numata T, Ishimatsu I, Kakuta Y, Tanaka I, Kimura M (2004) Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp 29. RNA 10:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Odell L, Huang V, Jakacka M, Pan T (1998) Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res 26:3717–3723

    Article  CAS  PubMed  Google Scholar 

  • Oh BK, Pace NR (1994) Interaction of the 3′-end of tRNA with ribonuclease P RNA. Nucleic Acids Res 22:4087–4094

    Article  CAS  PubMed  Google Scholar 

  • Oh BK, Frank DN, Pace NR (1998) Participation of the 3′-CCA of tRNA in the binding of catalytic Mg2+ ions by Ribonuclease P. Biochemistry 37:7277–7283

    Article  CAS  PubMed  Google Scholar 

  • Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34:902–909

    Article  CAS  PubMed  Google Scholar 

  • Pannucci JA, Haas ES, Hall TA, Harris JK, Brown JW (1999) RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci 96:7803–7808

    Article  CAS  PubMed  Google Scholar 

  • Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221:1–5

    Article  CAS  PubMed  Google Scholar 

  • Perederina A, Esakova O, Koc H, Schmitt ME, Krasilnikov AS (2007) Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs. RNA 13:1648–1655

    Article  CAS  PubMed  Google Scholar 

  • Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov AS (2010a) Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7. Acta Crystallogr F66:76–80

    CAS  Google Scholar 

  • Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov AS (2010b) Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J 29:761–769

    Article  CAS  PubMed  Google Scholar 

  • Perederina A, Krasilnikov AS (2010) The P3 domain of eukaryotic RNases P/MRP: making a protein-rich RNA-based enzyme. RNA Biol 7:534–539

    Article  CAS  PubMed  Google Scholar 

  • Piccinelli P, Rosenblad MA, Samuelsson T (2005) Identification and analysis of Ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 33:4485–4495

    Article  CAS  PubMed  Google Scholar 

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860

    Article  PubMed  Google Scholar 

  • Pluk H, van Eenennaam H, Rutjes SA, Pruijn GJM, van Venrooij WJ (1999) RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA 5:512–524

    Article  CAS  PubMed  Google Scholar 

  • Pulukkunat DK, Gopalan V (2008) Studies on Methanocaldococcus jannaschii RNase P reveal insights into the roles of RNA and protein cofactors in RNase P catalysis. Nucleic Acids Res 36:4172–4180

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Sosnick TR, Pan T (2001) Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry 40:11202–11210

    Article  CAS  PubMed  Google Scholar 

  • Reich C, Olsen GJ, Pace B, Pace NR (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239:178–181

    Article  CAS  PubMed  Google Scholar 

  • Reiner R, Ben-Asouli Y, Krilovetzky I, Jarrous N (2006) A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 20:1621–1635

    Article  CAS  PubMed  Google Scholar 

  • Reiner R, Krasnov-Yoeli N, Dehtiar Y, Jarrous N (2008) Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS ONE 3:e4072

    Article  PubMed  CAS  Google Scholar 

  • Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragon A (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468:784–789

    Article  CAS  PubMed  Google Scholar 

  • Ridanpaa M, Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B, van Venrooij W, Pruijn G, Salmela R, Rockas S, Makitie O, Kaitila I, Chapelle A (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195–203

    Article  CAS  PubMed  Google Scholar 

  • Ridanpaa M, Ward LM, Rockas S, Sarkioja M, Makela H, Susic M, Glorieux FH, Cole WG, Makitie O (2003) Genetic changes in the RNA components of RNase MRP and RNase P in Schmid metaphyseal chondrodysplasia. J Med Genet 40:741–746

    Article  CAS  PubMed  Google Scholar 

  • Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J Biol Chem 247:5243–5251

    CAS  PubMed  Google Scholar 

  • Rosenblad MA, Lopez MD, Piccinelli P, Samuelsson T (2006) Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 34:5145–5156

    Article  CAS  PubMed  Google Scholar 

  • Rossmanith W, Holzmann J (2009) Processing mitochondrial (t)RNAs. Cell Cycle 8:1650–1653

    Article  CAS  PubMed  Google Scholar 

  • Rueda D, Hsieh J, Day-Storms JJ, Fierke CA, Walter NG (2005) The 5′ leader of precursor tRNAAsp bound to the Bacillus subtilis RNase P holoenzyme has an extended conformation. Biochemistry 44:16130–16139

    Article  CAS  PubMed  Google Scholar 

  • Salinas K, Wierzbicki S, Zhou L, Schmitt ME (2005) Characterization and purification of Saccharomyces cerevisiae RNase MRP reveals a new unique protein component. J Biol Chem 280:11352–11360

    Article  CAS  PubMed  Google Scholar 

  • Schedl P, Primakoff P (1973) Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci 70:2091–2095

    Article  CAS  PubMed  Google Scholar 

  • Schmitt ME, Clayton DA (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13:7935–7941

    CAS  PubMed  Google Scholar 

  • Schmitt ME, Clayton DA (1994) Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Genes Dev 8:2617–2628

    Article  CAS  PubMed  Google Scholar 

  • Schneider MD, Bains AK, Rajendra TK, Dominski Z, Matera AG, Simmonds AJ (2010) Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene. RNA 16:2120–2130

    Article  CAS  PubMed  Google Scholar 

  • Seif E, Altman S (2008) RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. RNA 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Sidote DJ, Hoffman DW (2003) NMR structure of an archaeal homologue of Ribonuclease P protein Rpp 29. Biochemistry 42:13541–13550

    Article  CAS  PubMed  Google Scholar 

  • Sidote DJ, Heideker J, Hoffman DW (2004) Crystal structure of archaeal ribonuclease P protein aRpp 29 from Archaeoglobus fulgidus. Biochemistry 43:14128–14138

    Article  CAS  PubMed  Google Scholar 

  • Smith SD, Banerjee N, Sitz TO (1984) Gene heterogeneity: a basis for alternative 5.8S rRNA processing. Biochemistry 23:3648–3652

    Article  CAS  PubMed  Google Scholar 

  • Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115

    Article  CAS  PubMed  Google Scholar 

  • Stams T, Niranjanakumari S, Fierke CA, Christianson DW (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755

    Article  CAS  PubMed  Google Scholar 

  • Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    Article  CAS  PubMed  Google Scholar 

  • Stark BC, Kole R, Bowman EJ, Altman S (1978) Ribonuclease P: an enzyme with an essential RNA component. Proc Natl Acad Sci 75:3717–3721

    Article  CAS  PubMed  Google Scholar 

  • Stetz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci 90:6498–6502

    Article  Google Scholar 

  • Stohl LL, Clayton DA (1992) Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol Cell Biol 12:2561–2569

    CAS  PubMed  Google Scholar 

  • Stolc V, Altman S (1997) Rpp 1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. Genes Dev 11:2926–2937

    Article  CAS  PubMed  Google Scholar 

  • Svard SG, Kagardt U, Kirsebom LA (1996) Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. RNA 2:463–472

    CAS  PubMed  Google Scholar 

  • Sun L, Campbell FE, Zahler NH, Harris ME (2006) Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 25:3998–4007

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Watanabe M, Kakuta Y, Kamachi R, Numata T, Tanaka I, Kimura M (2004) Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 319:787–794

    Article  CAS  PubMed  Google Scholar 

  • Terada A, Honda T, Fukuhara H, Hada K, Kimura M (2006) Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3. J Biochem 140:293–298

    Article  CAS  PubMed  Google Scholar 

  • Thiel CT, Horn D, Zabel B, Ekici AB, Salinas K, Gebhart E, Ruschendorf F, Sticht H, Spranger J, Muller D, Zweier C, Schmitt ME, Reis A, Rauch A (2005) Severely incapacitating mutations in patients with extreme short stature indentify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am J Hum Genet 77:795–806

    Article  CAS  PubMed  Google Scholar 

  • Thiel CT, Mortier G, Kaitila I, Reis A, Rauch A (2007) Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia- anauxetic dysplasia spectrum. Am J Hum Genet 81:519–529

    Article  CAS  PubMed  Google Scholar 

  • Thomas BC, Li X, Gegenheimer P (2000a) Chloroplast ribonuclease P does not utilize the ribozyme-type pre-tRNA cleavage mechanism. RNA 6:545–553

    Article  CAS  PubMed  Google Scholar 

  • Thomas BC, Chamberlain J, Engelke DR, Gegenheimer P (2000b) Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA 6:554–562

    Article  CAS  PubMed  Google Scholar 

  • Toor N, Keating KS, Taylor SD, Pyle AM (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  CAS  PubMed  Google Scholar 

  • Topper JN, Bennett JL, Clayton DA (1992) A role for RNAase MRP in mitochondrial RNA processing. Cell 70:16–20

    Article  CAS  PubMed  Google Scholar 

  • Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragon A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587

    Article  CAS  PubMed  Google Scholar 

  • Torres-Larios A, Swinger KK, Pan T, Mondragon A (2006) Structure of ribonuclease P – a universal ribozyme. Curr Opin Struct Biol 16:327–335

    Article  CAS  PubMed  Google Scholar 

  • Tsai HY, Pulukkunat DK, Woznick WK, Gopalan V (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci 103:16147–16152

    Article  CAS  PubMed  Google Scholar 

  • Walker SC, Avis JM (2004) A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction. J Mol Biol 341:375–388

    Article  CAS  PubMed  Google Scholar 

  • Walker SC, Marvin MC, Engelke DR (2010) Eukaryote RNase P and RNase MRP. In: Liu F, Altman S (eds) Ribonuclease P. Springer, New York, pp 173–202

    Chapter  Google Scholar 

  • Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21:4654–4662

    Article  CAS  PubMed  Google Scholar 

  • Waugh DS, Pace NR (1990) Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria. J Bacteriol 172:6316–6322

    CAS  PubMed  Google Scholar 

  • Wegscheid B, Condon C, Hartmann RK (2006) Type A and B RNase P RNAs are interchangeable in vivo despite substantial biophysical differences. EMBO Rep 7:411–417

    CAS  PubMed  Google Scholar 

  • Wegscheid B, Hartmann RK (2006) The precursor tRNA 3′-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo. RNA 12:2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Welting TJM, van Venrooij WJ, Pruijn GJM (2004) Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res 32:2138–2146

    Article  CAS  PubMed  Google Scholar 

  • Wilson RC, Bohlen CJ, Foster MP, Bell CE (2006) Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci 103:873–878

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  CAS  PubMed  Google Scholar 

  • Woodhams MD, Stadler PF, Penny D, Collins LJ (2007) RNase MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evol Biol 7:S13

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP (2009) Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. J Mol Biol 393:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Stribinskis V, Ramos KS, Li Y (2006) Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12:699–706

    Article  CAS  PubMed  Google Scholar 

  • Ziehler WA, Morris J, Scott FH, Millikin C, Engelke DR (2001) An essential protein-binding domain of nuclear RNase P RNA. RNA 7:565–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I apologize to the authors of works that were not cited in this brief review due to space limitations. I would like to thank Lydia Krasilnikova for her help with the manuscript preparation. This work was supported by NIH grant GM085149 to A.S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey S. Krasilnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krasilnikov, A.S. (2011). Ribonucleoprotein Ribonucleases P and MRP. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_13

Download citation

Publish with us

Policies and ethics