Skip to main content

Nonlinear Dynamical Analysis of Magnetic Resonance Spectroscopy Data

  • Conference paper
Book cover Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

  • 930 Accesses

Abstract

Nuclear Magnetic Resonance (NMR) Spectroscopy is a rapidly developing technique that measures chemicals within the brain without removing tissue or blood samples. Furthermore, it is an important tool for performing non-invasive quantitative assessments of brain tumour glucose metabolism. The principles underlying this technique have been successfully used to produce high quality images of neuroanatomy and disease processes. Unfortunately, current diagnosis techniques ignore the dynamic aspects of these signals. It is largely believed that temporal variations of NMR Spectra are simply due to noise or do not carry enough information to be exploited by any reliable diagnosis procedure. In this paper, we investigate the underlying characteristics of these signals using some complexity measures in combination with information theoretic concepts. The dynamics of these signals are further analyzed using elements from the theory of nonlinear dynamical systems. Furthermore, we show that they exhibit rich chaotic dynamics suggesting the encoding of metabolic pathway information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  2. Blayo, F., Cheneval, Y., Guerin-Dugue, A., et al.: Enhanced Learning for Evolutive Neural Architecture, ESPRIT Basic Research Project Number 6891, Deliverable R3-B4-P, Task B4 (Benchmarks), pp. 11–22 (1995)

    Google Scholar 

  3. Cloarec, O., Dumas, M.E., Craig, A., et al.: Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic 1H NMR Data Sets. Anal. Chem. 77, 1282–1289 (2005)

    Article  Google Scholar 

  4. De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. J. Computat. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  5. Frahm, J., Hanioke, W., Merboldt, K.D.: Transverse coherence in Rapid FLASH NMR Imaging. J. Magn. Reson. 72, 307–314 (1987)

    Google Scholar 

  6. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Govindaraju, V., Young, K., Maudsley, A.A.: Proton NMR Chemical Shifts and Coupling Constants for Brain Metabolites. NMR Biomed. 13, 129–153 (2000)

    Article  Google Scholar 

  8. Hasty, J., McMillen, D., Isaacs, F., et al.: Computational Studies of Gene Regulatory Networks: in numero molecular biology. Nat. Rev. Gene. 2, 268–279 (2001)

    Article  Google Scholar 

  9. Hegger, R., Kantz, H., Schreiber, T.: Practical Implementation of Nonlinear Time Series Methods: The TISEAN package. CHAOS 9, 413–436 (1999)

    Article  MATH  Google Scholar 

  10. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Book  MATH  Google Scholar 

  11. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  12. Kantz, H.: Quantifying the Closeness of Fractal Measures. Phys. Rev. E 49, 5091–5097 (1994)

    Article  Google Scholar 

  13. Kantz, H., Kurths, J.: Nonlinear Analysis of Physiological Data. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Kantz, H., Schreiber, T., Hoffmann, I., et al.: Nonlinear noise reduction: a case study on experimental data. Phys. Rev. E 48, 1529–1538 (1993)

    Article  Google Scholar 

  15. Karp, P.D., Riley, M., Paley, S.M., et al.: The MetaCyc Database. Nucleic Acids Res. 37, 59–61 (2002)

    Article  Google Scholar 

  16. Kostelich, E.J., Schreiber, T.: Noise reduction in chaotic time series data: A survey of common methods. Phys. Rev. E 48, 1752–1763 (1993)

    Article  MathSciNet  Google Scholar 

  17. Le Méhauté, A.: Les Géométries Fractales, Hermès, Paris (1990)

    Google Scholar 

  18. Lin, C., Wang, J., Chung, P.: Mining Physiological Conditions from Heart Rate Variability Analysis. IEEE Computational Intelligence Mag. 5(1), 50–58 (2010)

    Article  Google Scholar 

  19. McKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Nelson, S.J., Brown, T.R.: A Method for Automatic Quantification of One-dimensional Spectra with low Signal-to-noise Ratio. J. Magn. Reson. 75, 229–243 (1987)

    Google Scholar 

  21. Nicholson, J.K., Lindon, J.C., Holmes, E.: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11), 1181–1189 (1999)

    Article  Google Scholar 

  22. Passe, T.J., Charles, H.C., Rajagopalan, P., Krishnan, K.R.: Nuclear Magnetic Resonance Spectroscopy: A review of Neuropsychiatric Applications. Prog. Neuro-Psychopharmacol. And Biol. Psychiat. 19, 541–563 (1995)

    Article  Google Scholar 

  23. Raamsdonk, L.M., Teusink, B., Broadhurst, D., et al.: A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19(1), 45–50 (2001)

    Article  Google Scholar 

  24. Szabo De Edelenyi, F., Rubin, C., Estevez, F., et al.: A new Approach for Analyzing Proton Magnetic Resonance Spectroscopic Images of Brain Tumors: Nosologic Images. Nat. Med. 6, 1287–1289 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chinea, A. (2011). Nonlinear Dynamical Analysis of Magnetic Resonance Spectroscopy Data. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics