Skip to main content

Support Vector Machine Approach to Cardiac SPECT Diagnosis

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

This article presents the use of Support Vector Machines (SVM) to diagnose the ischemic heart disease using heart images obtained from Single Proton Emission Computed Tomography (SPECT). The data set came from 267 different patients and was divided into several sub-sets containing training and validation data. The study consisted in comparing results of classifying cardiac SPECT images using SVMs with those obtained using another method of machine learning - CLIP3 - which is a combination of the decision tree algorithm and the rule induction algorithm. Validations carried out using a SPECT image database have shown that SVMs are good in generalising knowledge gained about multi-dimensional data with relatively little training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, S., et al.: European Cardiovascular Disease Statistics 2008 edition, European Heart Network (2008)

    Google Scholar 

  2. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 955–974 (1998)

    Article  Google Scholar 

  3. Burges, C.J.C., Crisp, D.: Uniqueness of the SVM solution. In: Advances in Neural Information Processing Systems, vol. 12, pp. 223–229. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Ciecholewski, M.: Gallbladder Segmentation in 2-D Ultrasound Images Using Deformable Contour Methods. In: Torra, V., Narukawa, Y., Daumas, M. (eds.) MDAI 2010. LNCS (LNAI), vol. 6408, pp. 163–174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Ciecholewski, M.: Gallbladder Boundary Segmentation from Ultrasound Images Using Active Contour Model. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 63–69. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cios, K.J., Pedrycz, W., Swiniarski, R.: Data Mining Methods for Knowledge Discovery. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  7. Clark, P., Niblett, T.: The CN2 algorithm. Machine Learning 3, 261–283 (1989)

    Google Scholar 

  8. Data Bases SPECT i SPECTF from UCI Machine Learning Repository, on-line http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowledge and Information Systems 11(2), 243–258 (2007)

    Article  Google Scholar 

  10. Gunn, S.: Support vector machines for classification and regression. Technical Report, Dept. of Electronics and Computer Science, University of Southampton, Southampton, U.K (1998)

    Google Scholar 

  11. International Cardiovascular Disease Statistics 2009, Statistical Fact Sheet – Populations, American Heart Association (2009)

    Google Scholar 

  12. Kurgan, L.A., Cios, K.J., et al.: Knowledge discovery approach to automated cardiac SPECT diagnosis. Artificial Intelligence in Medicine 23(2), 149–169 (2001)

    Article  Google Scholar 

  13. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Neural Networks for Signal Processing VII, pp. 276–285. IEEE, New York (1998)

    Google Scholar 

  14. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods – Support Vector Learning, pp. 185–220. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  16. Salas–Gonzalez, D., Górriz, J.M., et al.: Selecting Regions of Interest in SPECT Images Using Wilcoxon Test for the Diagnosis of Alzheimers Disease. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 446–451. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciecholewski, M. (2011). Support Vector Machine Approach to Cardiac SPECT Diagnosis. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics