Skip to main content

Linear Programming for Bernstein Based Solvers

  • Conference paper
  • 568 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6301))

Abstract

Some interval Newton solvers rely on tensorial Bernstein bases to compute sharp enclosures of multivariate polynomials on the unit hypercube. These solvers compute all coefficients with respect to tensorial Bernstein bases. Unfortunately, polynomials become exponential size in tensorial Bernstein bases. This article gives the first polynomial time method to solve this issue. A polynomial number of relevant Bernstein polynomials is selected. The non-negativity of each of these Bernstein polynomials gives a linear inequality in a space connected to the monomials of the canonical tensorial basis. We resort to linear programming on the resulting Bernstein polytope to compute range bounds of a polynomial or bounds of the zero set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumont, O.: Algorithmique pour les intervalles. Ph.D. thesis, Université de Rennes 1 (1999)

    Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Delanoue, N., Jaulin, L., Cottenceau, B.: Guaranteeing the homotopy type of a set defined by nonlinear inequalities. Reliable Computing 13(5), 381–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durand, C.B.: Symbolic and Numerical Techniques for Constraint Solving. Ph.D. thesis, Purdue University (1998)

    Google Scholar 

  5. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: SMA 2001: Proc. of the 6th ACM Symp. on Solid Modeling and Applications, pp. 1–10. ACM Press, New York (2001), doi:10.1145/376957.376958

    Google Scholar 

  6. Fünfzig, C., Michelucci, D., Foufou, S.: Nonlinear systems solver in floating-point arithmetic using lp reduction. In: SPM 2009: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 123–134. ACM, New York (2009), doi:10.1145/1629255.1629271

    Chapter  Google Scholar 

  7. Fünfzig, C., Michelucci, D., Foufou, S.: Optimizations for bernstein-based solvers using domain reduction. In: CD Proceedings of Eighth International Symposium on Tools and Methods of Competitive Engineering (TMCE 2010). Faculty of Industrial Design Engineering, Delft University of Technology, Ancona, Italy (2010)

    Google Scholar 

  8. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving systems of polynomial equations. Journal of Nonlinear Analysis: Series A Theory and Methods 47(1), 167–178 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  10. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Computer Aided Geometric Design 7(19), 553–587 (2002), citeseer.ist.psu.edu/article/martin02comparison.html

    Article  MathSciNet  MATH  Google Scholar 

  11. Michelucci, D., Foufou, S.: Bernstein basis for interval analysis: application to geometric constraints systems solving. In: Bruguera, Daumas (eds.) Proceedings of 8th Conference on Real Numbers and Computers, pp. 37–46. Unidixital, Santiago de Compostela (2008)

    Google Scholar 

  12. Michelucci, D.: Solving geometric constraints by homotopy. IEEE Trans on Visualization and Computer Graphics, 28–34 (1996)

    Google Scholar 

  13. Mourrain, B., Pavone, J.-P.: Subdivision methods for solving polynomial equations. Journal of Symbolic Computation 3(44), 292–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delanoue, N., Jaulin, L., Cottenceau, B.: Using interval arithmetic to prove that a set is path-connected. Theoretical Computer Science, Special issue: Real Numbers and Computers 351(1), 119–128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reuter, M., Mikkelsen, T.S., Sherbrooke, E.C., Maekawa, T., Patrikalakis, N.M.: Solving nonlinear polynomial systems in the barycentric bernstein basis. Vis. Comput. 24(3), 187–200 (2008)

    Article  Google Scholar 

  16. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Des. 10(5), 379–405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sommese, A.J., Wampler, C.W.: Numerical solution of polynomial systems arising in engineering and science. World Scientific Press, Singapore (2005)

    Book  MATH  Google Scholar 

  18. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, TU Berlin (1996), http://www.zib.de/Publications/abstracts/TR-96-09/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michelucci, D., Fünfzig, C. (2011). Linear Programming for Bernstein Based Solvers. In: Sturm, T., Zengler, C. (eds) Automated Deduction in Geometry. ADG 2008. Lecture Notes in Computer Science(), vol 6301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21046-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21046-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21045-7

  • Online ISBN: 978-3-642-21046-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics