Skip to main content

Reducing Position-Sensitive Subset Ranking to Classification

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6657))

Included in the following conference series:

  • 1577 Accesses

Abstract

A widespread idea to attack ranking works by reducing it into a set of binary preferences and applying well studied classification techniques. The basic question addressed in this paper relates to whether an accurate classifier would transfer directly into a good ranker. In particular, we explore this reduction for subset ranking, which is based on optimization of DCG metric (Discounted Cumulated Gain), a standard position-sensitive performance measure. We propose a consistent reduction framework, guaranteeing that the minimal DCG regret is achievable by learning pairwise preferences assigned with importance weights. This fact allows us to further develop a novel upper bound on the DCG regret in terms of pairwise regrets. Empirical studies on benchmark datasets validate the proposed reduction approach with improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ailon, N., Mohri, M.: An efficient reduction of ranking to classification. In: Proc. 21st COLT, pp. 87–98 (2008)

    Google Scholar 

  2. Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., Sorkin, G.B.: Robust reductions from ranking to classification. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 604–619. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Beygelzimer, A., Dani, V., Hayes, T., Langford, J., Zadrozny, B.: Error limiting reductions between classification tasks. In: Proc. 22nd ICML, pp. 49–56 (2005)

    Google Scholar 

  4. Beygelzimer, A., Langford, J., Ravikumar, P.: Error-correcting tournaments. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 247–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proc. 22nd ICML, pp. 89–96 (2005)

    Google Scholar 

  6. Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to rank with non-smooth cost functions. In: Proc. 19th NIPS, pp. 193–200. MIT Press, Cambridge (2006)

    Google Scholar 

  7. Cortes, C., Mohri, M., Rastogi, A.: Magnitude-preserving ranking algorithms. In: Proc. 24th ICML, pp. 169–176 (2007)

    Google Scholar 

  8. Cossock, D., Zhang, T.: Statistical analysis of bayes optimal subset ranking. IEEE Transactions on Information Theory 54, 5140–5154 (2008)

    Article  MATH  Google Scholar 

  9. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

    MATH  Google Scholar 

  10. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: Proc. 9th ICANN, pp. 97–102 (1999)

    Google Scholar 

  11. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20, 422–446 (2002)

    Article  Google Scholar 

  12. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. 8th KDD, pp. 133–142. ACM Press, New York (2002)

    Google Scholar 

  13. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)

    Article  MATH  Google Scholar 

  14. Langford, J., Beygelzimer, A.: Sensitive error correcting output codes. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 158–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Le, Q.V., Smola, A.J.: Direct optimization of ranking measures. In: CoRR, abs/0704.3359 (2007)

    Google Scholar 

  16. Marshall, A., Olkin, I.: Inequalities: Theory of majorization and its applications. Mathematics in Science and Engineering, vol. 143 (1979)

    Google Scholar 

  17. Asia, M.R.: Letor3.0: benchmark datasets for learning to rank. Microsoft Corporation (2008)

    Google Scholar 

  18. Sun, Z.Y., Qin, T., Tao, Q., Wang, J.: Robust sparse rank learning for non-smooth ranking measures. In: Proc. 32nd SIGIR, pp. 259–266 (2009)

    Google Scholar 

  19. Zhang, T.: Statistical behavior and consistency of classification methods based on convex risk minimization. The Annuals of Statistics 32, 56–85 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Z., Jin, W., Wang, J. (2011). Reducing Position-Sensitive Subset Ranking to Classification. In: Butz, C., Lingras, P. (eds) Advances in Artificial Intelligence. Canadian AI 2011. Lecture Notes in Computer Science(), vol 6657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21043-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21043-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21042-6

  • Online ISBN: 978-3-642-21043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics