Skip to main content

In Silico Analysis of the Impact of Transmural Myocardial Infarction on Cardiac Mechanical Dynamics for the 17 AHA Segments

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

  • 1699 Accesses

Abstract

The impact of transmural infarctions of the left ventricle on the cardiac mechanical dynamics is evaluated for all 17 AHA segments in a computer model. The simulation framework consists of two parts: an electrophysiological model and an elastomechanical model of the ventricles. The electrophysiological model is used to simulate the electrophysiological processes on cellular level, excitation propagation and the tension development. It is linked to the elastomechanical model, which is based on nonlinear finite element analysis for continuum mechanics. Altogether, 18 simulations of the contraction of the ventricles were performed, 17 with an infarction in the respective AHA segment and one simulation for the control case. For each simulation, the mechanical dynamics as well as the wall thickening of the infarct region were analyzed and compared to the corresponding region of the control case. The simulation revealed details of the impact of the myocardial infarction on wall thickening as well as on the velocity of the infarct region for most of the AHA segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axel, L., Dougherty, L.: Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172(2), 349 (1989)

    Article  Google Scholar 

  2. Neizel, M., Lossnitzer, D., Korosoglou, G., Schaufele, T., Peykarjou, H., Steen, H., Ocklenburg, C., Giannitsis, E., Katus, H., Osman, N.: Strain-encoded MRI for evaluation of left ventricular function and transmurality in acute myocardial infarction. Circulation: Cardiovascular Imaging 2(2), 116 (2009)

    Google Scholar 

  3. Kayser, M., Hein, W., van der Geest Msc, R., van der Wall, M., Ernst, E., Duchateau Msc, C., de Roos, M., et al.: Right ventricular function in patients after acute myocardial infarction assessed with phase contrast MR velocity mapping encoded in three directions. Journal of Magnetic Resonance Imaging 11(5), 471–475 (2000)

    Article  Google Scholar 

  4. Jung, B., Markl, M., Foll, D., Hennig, J.: Investigating myocardial motion by MRI using tissue phase mapping. European Journal of Cardiothoracic Surgery 29 (suppl.1), 150–157 (2006)

    Article  Google Scholar 

  5. Chabiniok, R., Chapelle, D., Lesault, P., Rahmouni, A., Deux, J.: Validation of a biomechanical heart model using animal data with acute myocardial infarction. In: CI2BM 2009 - MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling (2009)

    Google Scholar 

  6. Streeter, D.: Gross morphology and fiber geometry of the heart. In: Handbook of Physiology: The Cardiovascular System, vol. I, pp. 61–112. American Physiology Society (1979)

    Google Scholar 

  7. ten Tusscher, K., Noble, D., Noble, P., Panfilov, A.: A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology 286, H1573–H1589 (2004)

    Article  Google Scholar 

  8. Keller, D.U.J., Weber, F.M., Seemann, G., Dössel, O.: Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Transactions on Biomedical Engineering 57, 1568–1576 (2010)

    Article  Google Scholar 

  9. Seemann, G., Keller, D., Krueger, M., Weber, F., Wilhelms, M., Dössel, O.: Electrophysiological modeling for cardiology: methods and potential applications. Information Technology 52, 242–249 (2010)

    Google Scholar 

  10. Keller, D.U.J., Kalayciyan, R., Dössel, O., Seemann, G.: Fast creation of endocardial stimulation profiles for the realistic simulation of body surface ECGs. In: IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 25/4, pp. 145–148 (2009)

    Google Scholar 

  11. Sachse, F., Glänzel, K., Seemann, G.: Modeling of protein interactions involved in cardiac tension development. International Journal of Bifurcation and Chaos 13, 3561–3578 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wolff, M., Whitesell, L., Moss, R.: Calcium sensitivity of isometric tension is increased in canine experimental heart failure. Circulation Research 76, 781–789 (1995)

    Article  Google Scholar 

  13. Belytschko, T., Liu, W., Moran, B.: Nonlinear finite elements for continua and structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  14. Okamoto, R., Moulton, M., Peterson, S., Li, D., Pasque, M., Guccione, J.: Epicardial suction: A new approach to mechanical testing of the passive ventricular wall. Journal of Biomechanical Engineering 122, 479–487 (2000)

    Article  Google Scholar 

  15. Omens, J., MacKenna, D., McCulloch, A.: Measurement of strain and analysis of stress in resting rat left ventricular myocardium. Journal of Biomechanics 26(6), 665–676 (1993)

    Article  Google Scholar 

  16. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith, B., Zhang, H.: Petsc web page, http://www.mcs.anl.gov/petsc

  17. Holmes, J., Borg, T., Covell, J.: Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering 7, 223–253 (2005)

    Article  Google Scholar 

  18. Connelly, C., Vogel, W., Wiegner, A., Osmers, E., Bing, O., Kloner, R., Dunn-Lanchantin, D., Franzblau, C., Apstein, C.: Effects of reperfusion after coronary artery occlusion on post-infarction scar tissue. Circulation Research 57(4), 562 (1985)

    Article  Google Scholar 

  19. Gupta, K., Ratcliffe, M., Fallert, M., Edmunds Jr., L., Bogen, D.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89(5), 2315 (1994)

    Article  Google Scholar 

  20. Cerqueira, M., Weissman, N., Dilsizian, V., Jacobs, A., Kaul, S., Laskey, W., Pennell, D., Rumberger, J., Ryan, T., Verani, M.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging comittee of the council on clinical cardiology of the american heart association. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fritz, T., Jarrousse, O., Keller, D.U.J., Seemann, G., Dössel, O. (2011). In Silico Analysis of the Impact of Transmural Myocardial Infarction on Cardiac Mechanical Dynamics for the 17 AHA Segments. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics