Skip to main content

Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2011)

Abstract

Atrial myofiber orientation is complex and has multiple discrete layers and bundles. A novel robust semi-automatic method to incorporate atrial anisotropy and heterogeneities into patient-specific models is introduced. The user needs to provide 22 distinct seed-points from which a network of auxiliary lines is constructed. These are used to define fiber orientation and myocardial bundles. The method was applied to 14 patient-specific volumetric models derived from CT, MRI and photographic data. Initial electrophysiological simulations show a significant influence of anisotropy and heterogeneity on the excitation pattern and P-wave duration (20.7% shortening). Fiber modeling results show good overall correspondence with anatomical data. Minor modeling errors are observed if more than four pulmonary veins exist in the model. The method is an important step towards creating realistic patient-specific atrial models for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plank, G., Prassl, A.J., Wang, J.I., Seemann, G., Scherr, D., Sanchez-Quintana, D., Calkins, H., Trayanova, N.A.: Atrial fibrosis promotes the transistion of pulmonary vein ectopy into reentrant arrhathmias. In: Heart Rhythm (2008)

    Google Scholar 

  2. Vigmond, E.J., Ruckdeschel, R., Trayanova, N.: Reentry in a morphologically realistic atrial model. Cardiovasc Electrophysiol. 12, 1046–1054 (2001)

    Article  Google Scholar 

  3. Zemlin, C., Herzel, H., Ho, S., Panfilov, A.: A realistic and efficient model of excitation propagation in the human atria. In: Computer Simulation and Experimental Assessment of Cardiac Electrophysiology, Futura, pp. 29–34 (2001)

    Google Scholar 

  4. Jacquemet, V.: A biophysical model of atrial fibrillation and electrograms: formulation, validation and applications. PhD thesis (2004)

    Google Scholar 

  5. Tobón, C., Ruiz, C., Heidenreich, E., Hornero, F., Sáiz, J.: Effect of the ectopic beats location on vulnerability to reentries in a three-dimensional realistic model of human atria. Computers in Cardiology 36, 449–452 (2009)

    Google Scholar 

  6. Seemann, G., Höper, C., Sachse, F.B., Dössel, O., Holden, A.V., Zhang, H.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Phil. Trans. Roy. Soc. A 364, 1465–1481 (2006)

    Article  Google Scholar 

  7. Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Transactions on Medical Imaging 26, 1500–1514 (2007)

    Article  Google Scholar 

  8. Hermosillo, B.D.F.: Semi-automatic enhancement of atrial models to include atrial architecture and patient specific data: For biophysical simulations. Computers in Cardiology 35, 633–636 (2008)

    Google Scholar 

  9. Krueger, M.W., Weber, F.M., Seemann, G., Dössel, O.: Semi-automatic segmentation of sinus node, bachmann’s bundle and terminal crest for patient specific atrial models. In: World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol. 25/4, pp. 673–676. Springer, Heidelberg (2009)

    Google Scholar 

  10. Krueger, M.W., Rhode, K., Weber, F.M., Keller, D.U.J., Caulfield, D., Seemann, G., Knowles, B.R., Razavi, R., Dössel, O.: Patient-specific volumetric atrial models with electrophysiological components: A comparison of simulations and measurements. Biomedizinische Technik / Biomedical Engineering 55(s1), 54–57 (2010)

    Google Scholar 

  11. Feng, J., Yue, L., Wang, Z., Nattel, S.: Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ. Res. 83, 541–551 (1998)

    Article  Google Scholar 

  12. Papez, J.W.: Heart musculature of the atria. Am. J. Anatomy 27, 255–286 (1920)

    Article  Google Scholar 

  13. Sanchez-Quintana, D., Anderson, R., Cabrera, J., Climent, V., Martin, R., Farre, J., Ho, S.: The terminal crest: morphological features relevant to electrophysiology. Heart (British Cardiac Society) 88, 406–411 (2002)

    Article  Google Scholar 

  14. Ho, S., Sanchez-Quintana, D.: The importance of atrial structure and fibers. Clinical Anatomy (New York, N.Y.) 22, 52–63 (2009)

    Article  Google Scholar 

  15. Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M., Vembar, M., Olszewski, M., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in ct images. IEEE Transactions on Medical Imaging 27, 1189–1201 (2008)

    Article  Google Scholar 

  16. Weese, J., Peters, J., Meyer, C., Wächter, I., Kneser, R., Lehmann, H., Ecabert, O., Barschdorf, H., Hanna, R., Weber, F.M., Dössel, O., Lorenz, C.: The generation of patient-specific heart models for diagnosis and interventions. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 25–35. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Platonov, P.G., Ivanov, V., Ho, S.Y., Mitrofanova, L.: Left atrial posterior wall thickness in patients with and without atrial fibrillation: data from 298 consecutive autopsies. Cardiovasc Electrophysiol. 19, 689–692 (2008)

    Article  Google Scholar 

  18. Baerentzen, J.: On the implementation of fast marching methods for 3D lattices. Technical report (2001)

    Google Scholar 

  19. Wan, S.Y., Higgins, W.E.: Symmetric region growing. IEEE Transactions on Image Processing 12, 1007–1015 (2003)

    Article  Google Scholar 

  20. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  21. Seemann, G., Sachse, F.B., Karl, M., Weiss, D.L., Heuveline, V., Dössel, O.: Framework for modular, flexible and efficient solving the cardiac bidomain equation using petsc. Progr. Industr. Math. 15, 363–369 (2010)

    Article  MATH  Google Scholar 

  22. Harrild, D.M., Henriquez, C.S.: A computer model of normal conduction in the human atria. Circ. Res. 87, 25 (2000)

    Article  Google Scholar 

  23. Sachse, F., Frech, R., Werner, C., Dössel, O.: A model based approach to assignment of myocardial fibre orientation. In: Proceedings of Computers in Cardiology, Hannover, pp. 145–148 (1999)

    Google Scholar 

  24. Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: In vivo human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Zhao, J., Trew, M.L., Legrice, I.J., Smaill, B.H., Pullan, A.J.: A tissue-specific model of reentry in the right atrial appendage. Cardiovasc Electrophysiol. 20, 675–684 (2009)

    Article  Google Scholar 

  26. Campos, F.O., Wiener, T., Prassl, A.J., Ahammer, H., Plank, G., Weber Dos Santos, R., Sanchez-Quintana, D., Hofer, E.: A 2D-computer model of atrial tissue based on histographs describes the electro-anatomical impact of microstructure on endocardiac potentials and electric near-fields. In: Annual International Conference of the IEEE EMBC Society, vol. 1, pp. 2541–2544 (2010)

    Google Scholar 

  27. Marom, E., Herndon, J., Kim, Y., McAdams, H.: Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230, 824–829 (2004)

    Article  Google Scholar 

  28. Boineau, J.P., Canavan, T.E., Schuessler, R.B., Cain, M.E., Corr, P.B., Cox, J.L.: Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circ. 77, 1221–1237 (1988)

    Article  Google Scholar 

  29. De Ponti, R., Ho, S.Y., Salerno-Uriarte, J.A., Tritto, M., Spadacini, G.: Electroanatomic analysis of sinus impulse propagation in normal human atria. Journal of Cardiovascular Electrophysiology 13, 1–10 (2002)

    Article  Google Scholar 

  30. Wang, L., Zhang, H., Wong, K.C.L., Liu, H., Shi, P.: Noninvasive imaging of electrophysiological substrates in post myocardial infarction. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 732–740. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Hansson, A., Holm, M., Blomstrom, P., Johansson, R., Luhrs, C., Brandt, J., Olsson, S.: Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. Eur. Heart. J. 19, 293–300 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krueger, M.W. et al. (2011). Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics