Skip to main content

Simulation of Diffusion Anisotropy in DTI for Virtual Cardiac Fiber Structure

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

Diffusion anisotropy is the most fundamental and important parameter in the description of cardiac fibers using diffusion tensor magnetic resonance imaging (DTI), by reflecting the microstructure variation of the fiber. It is, however still not clear how the diffusion anisotropy is influenced by different contiguous structures (collagen, cardiac myocyte, etc.). In this paper, a virtual cardiac fiber structure is modeled, and diffusion weighted imaging (DWI) and DTI are simulated by the Monte Carlo method at various scales. The influences of the water content ratio in the cytoplasm and the extracellular space and the membrane permeability upon diffusion anisotropy are investigated. The simulation results show that the diffusion anisotropy increases with the increase of the ratio of water content between the intracellular cytoplasm and the extracellular medium. We show also that the anisotropy decreases with the increase of myocyte membrane permeability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. International Congress Series. Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A 28, 101–122 (2006)

    Article  Google Scholar 

  3. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magnet. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  4. Özarslan, E., Koay, C.G., Basser, P.J.: Remarks on q-space MR propagator in partially restricted, axially-symmetric, and isotropic environments. Magnetic Resonance Imaging 27, 834–844 (2009)

    Article  Google Scholar 

  5. Tuch, D.S.: Q-ball imaging. Magnet. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  6. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging 24, 478–488 (2006)

    Article  Google Scholar 

  7. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine 52, 965–978 (2004)

    Article  Google Scholar 

  8. Severs, N.J.: The cardiac muscle cell. Bioessays 22, 188–199 (2000)

    Article  Google Scholar 

  9. Duh, A., Mohori, A., Stepinik, J.: Computer simulation of the spin-echo spatial distribution in the case of restricted self-diffusion. Journal of Magnetic Resonance 148, 257–266 (2001)

    Article  Google Scholar 

  10. Cai, C., Chen, Z., Cai, S., Zhong, J.: Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences. Physica B: Condensed Matter 366, 127–137 (2005)

    Article  Google Scholar 

  11. Fieremans, E., De Deene, Y., Delputte, S., Özdemir, M.S., D’Asseler, Y., Vlassenbroeck, J., et al.: Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. Journal of Magnetic Resonance 190, 189–199 (2008)

    Article  Google Scholar 

  12. Avram, L., Özarslan, E., Assaf, Y., Bar-Shir, A., Cohen, Y., Basser, P.J.: Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR in Biomedicine 2, 888–898 (2008)

    Article  Google Scholar 

  13. Heidi, J.B., Timothy, E.J.B.: Diffusion MRI, 1st edn., p. 8. Elsevier, Amsterdam (2009)

    Google Scholar 

  14. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 28, 123–154 (2006)

    Article  Google Scholar 

  15. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts in Magnetic Resonance Part A 28, 155–179 (2006)

    Article  Google Scholar 

  16. Skeletal, M., Reid, R.H.J., Lucia, L.B.: Histology for Pathologists, 3rd edn., p. 201. Williams & Wilkins, Baltimore (2009)

    Google Scholar 

  17. Bihan, D.L.: The ’wet mind’: water and functional neuroimaging. Physics in medicine and biology 52, R57–R90 (2007)

    Article  MathSciNet  Google Scholar 

  18. Iaizzo, P.A.: Handbook of Cardiac Anatomy, Physiology, and Devices, 2nd edn. (2009)

    Google Scholar 

  19. Friedrich, M.G.: Myocardial edema—a new clinical entity? Nature Reviews Cardiology (2010)

    Google Scholar 

  20. Egan, J.R., Butler, T.L., Au, C.G., Tan, Y.M., North, K.N., Winlaw, D.S.: Myocardial water handling and the role of aquaporins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 1043–1152 (2006)

    Article  Google Scholar 

  21. Ogura, T., Imanishi, S., Shibamoto, T.: Osmometric and water-transporting properties of guinea pig cardiac myocytes. The Japanese Journal of Physiology 52, 333–342 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Zhu, YM., Li, H., Liu, W., Magnin, I.E. (2011). Simulation of Diffusion Anisotropy in DTI for Virtual Cardiac Fiber Structure. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics