Computational Neural Model of the Bilingual Stroop Effect: An fMRI Study

  • Hyo Woon Yoon
Part of the Communications in Computer and Information Science book series (CCIS, volume 151)


A functional MRI was used to investigate the computational neuronal model of differential processing patterns of two languages (Korean as a mother language, L1 and English as L2) in the late Korean-English bilingual subjects during the performance of a Stroop task during overt production of words. The Stroop paradigm experiment was done separately in L1 and L2 and the imaging results of these different conditions were compared. In the case of L1, the activation of the bilateral anterior cingulate gyrus was observed among others. L1 related activation was also observed in middle frontal and inferior parietal lobule. In the case of L2, frontal and parietal as well as superior temporal activation was observed, but the absence of ACC activation was reported. This difference led to an argument that the differential information processing (automatization, inhibition control) mechanisms between L1 and L2.


automatization inhibition control anterior cingulate gyrus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klein, D., Milner, B., Zatorre, R.J., Zhao, V., Nikelski, J.: Cerebral organization in bilinguals: A PET study of Chinese–English verb generation. NeuroReport 10(13), 2841–2846 (1999)CrossRefGoogle Scholar
  2. 2.
    Hernandez, A.E., Martinez, A., Kohnert, K.: In search of the language switch: An fMRI study of picture naming in Spanish–English bilinguals. Brain and Language 73(3), 421–431 (2000)CrossRefGoogle Scholar
  3. 3.
    Cohen, J.D., Dunbar, K., McClelland, J.L.: On the control of automatic process: A parallel distributed processing account of the Stroop effect. Psychological Review 97(3), 332–361 (1990)CrossRefGoogle Scholar
  4. 4.
    Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S., Paulesu, E., Dupoux, E., Fazio, F., Mehler, J.: Brain processing of native and foreign languages. NeuroReport 7(15-17), 2439–2444 (1996)CrossRefGoogle Scholar
  5. 5.
    Pallier, C., Dehaene, S., Poline, J.-B., LeBihan, D., Argenti, A.-M., Dupoux, E., Mehler, J.: Brain imaging of language plasticity in adopted adults: Can a second language replace the first? Cerebral Cortex 13(2), 155–161 (2003)CrossRefGoogle Scholar
  6. 6.
    Aglioti, S., Fabbro, F.: Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. NeuroReport 4(12), 1359–1362 (1993)CrossRefGoogle Scholar
  7. 7.
    Fabbro, F., Paradis, M.: Acquired aphasia in bilingual child. In: Paradis, M. (ed.) Aspects of bilingual aphasia, pp. 67–83. Pergamon Press, Oxford (1995)Google Scholar
  8. 8.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. Thime, New York (1988)Google Scholar
  9. 9.
    MacLeod, C.M.: Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin 109(2), 163–203 (1991)CrossRefGoogle Scholar
  10. 10.
    Roberts, A.C., Robbins, T.W., Weiskrantz, L.: The prefrontal cortex: Executive and cognitive functions. Oxford University Press, Oxford (1998)CrossRefGoogle Scholar
  11. 11.
    Stuss, D.T., Shallice, T., Alexander, M.P., Picton, T.W.: A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Science 769(11), 191–211 (1995)CrossRefGoogle Scholar
  12. 12.
    Schneider, W., Chein, J.M.: Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science 27(3), 525–559 (2003)CrossRefGoogle Scholar
  13. 13.
    Banich, M.T., Milham, M.P., Atchley, R., Cohen, N.J., Webb, A., Wszalek, T., Kramer, A.F., Liang, Z.P., Wright, A., Shenker, J., Magin, R.: fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience 12(6), 988–1000 (2000)CrossRefGoogle Scholar
  14. 14.
    Bench, C.J., Frith, C.D., Grasby, P.M., Friston, K.J., Paulesu, E., Frackowiak, R.S.J., Dolan, R.J.: Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31(9), 907–922 (1993)CrossRefGoogle Scholar
  15. 15.
    Pardo, J.V., Pardo, P.J., Janer, K.W., Raichle, M.E.: The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the USA 87(1), 256–259 (1990)CrossRefGoogle Scholar
  16. 16.
    Adleman, N.E., Menon, V., Blasey, C.M., White, C.D., Warsofsky, I.S., Glover, G.H., Reiss, A.L.: A developmental fMRI study of the Stroop color-word task. NeuroImage 16(1), 61–75 (2002)CrossRefGoogle Scholar
  17. 17.
    Peterson, B.S., Kane, M.J., Alexander, G.M., Lacadie, C., Skudlarski, P., Leung, H.C., May, J., Gore, J.C.: An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research 13(3), 427–440 (2002)CrossRefGoogle Scholar
  18. 18.
    Taylor, S.F., Kornblum, S., Lauber, E.J., Minoshima, S., Koeppe, R.A.: Isolation of specific interference processing in the Stroop task: PET activation studies. NeuroImage 6(2), 81–92 (1997)CrossRefGoogle Scholar
  19. 19.
    Fink, G.R., Dolan, R.J., Halligan, P.W., Marshall, J.C., Frith, C.D.: Space-based and object-based visual attention: Shared and specific neural domains. Brain 120(11), 2013–2028 (1997)CrossRefGoogle Scholar
  20. 20.
    LaBerge, D., Buchsbaum, M.S.: Positron emission tomographic measurements of pulvinar activity during an attention task. Journal of Neuroscience 10(2), 613–619 (1990)Google Scholar
  21. 21.
    Pinel, P., Le Clec’H, G., van de Moortele, P.F., Naccache, L., Le Bihan, D., Dehaene, S.: Event-related fMRI analysis of the cerebral circuit for number comparison. NeuroReport 10(7), 1473–1479 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hyo Woon Yoon
    • 1
  1. 1.Department of art therapyDaegu Cyber UniversityDaeguKorea

Personalised recommendations