Recommendation System of IPTV TV Program Using Ontology and K-means Clustering

  • Jongwoo Kim
  • Eungju Kwon
  • Yongsuk Cho
  • Sanggil Kang
Part of the Communications in Computer and Information Science book series (CCIS, volume 151)


In this paper we introduce a recommendation system for recommending preferred TV genres for each viewer, using ontology technique and K-means clustering algorithm. The algorithm is developed based on the personal VOD viewing history. First, the viewing history is built in an ontology which is able to achieve inference process through a query. In the list of users, each item and class obtain the probability of preference of VODs and then the information is used for building the ontology. From the ontology we select each user’s preferred VODs using K-means algorithm. In the experimental section, we show the feasibility of our algorithm using real TV viewing data.


clustering K-means ontology recommendation of genres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansari, A., Skander, E., Rajeev, K.: Internet Revcommendation System. Journal of Marketin Research 37 (August 2000)Google Scholar
  2. 2.
    Chumki, B., Haym, H., William, W., Craig, N.: Recommending Papers by Mining the WebGoogle Scholar
  3. 3.
    Greg, L., Brent, S., Jeremy, Y.: Recommendations: Published by the IEEE Computer Society Industry Report (January 2003)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wileyinterscience, New York (2001)zbMATHGoogle Scholar
  5. 5.
    Kim, Y.S., Mitra, S.: Inegrated Adaptive Fuzzy clustering (IAFC) Algorithm. In: Proc. of the Second IEEE International Conference on Fuzzy Systems, San Francisco, vol. 2, pp. 1264–1268 (1993)Google Scholar
  6. 6.
    Kim, J.W., Yoon, T.B., Kim, D.M., Lee, J.H.: A Personalized Music Recommendation System with a Time-weighted Clustering, vol. 19(4), pp. 504–510 (2009)Google Scholar
  7. 7.
    Benjamin., A., Leo., S., Thomas, R.: ConTag: A Semantic Tag Recommendation System. In: I-SEMANTICS 2007 Papers, pp. 297–304 (2007)Google Scholar
  8. 8.
    Martín, L.N., Yolanda, B.F., José, J.P.A., Jorge, G.D., Manuel, R.C., Alberto, G.S., Rebeca, P.D.R., Ana, F.V.: Receiver-side semantic reasoning for digital TV personalization in the absence of return channels. Multimedia Tools and Applications 41(3), 407–436 (2009)CrossRefGoogle Scholar
  9. 9.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jongwoo Kim
    • 1
  • Eungju Kwon
    • 1
  • Yongsuk Cho
    • 2
  • Sanggil Kang
    • 1
  1. 1.Department of Computer Science and Information EngineeringInha UniversityIncheonKorea
  2. 2.Department of Electronic EngineeringKonyang UniversityChungcheongnam-doKorea

Personalised recommendations