Skip to main content

Calculation of Uncertainty

  • Chapter
  • First Online:
Book cover Measurement Uncertainties
  • 2430 Accesses

Abstract

We may explain the meaning and importance of uncertainty in measurement in several ways. It is widely recognized that the value of a measured quantity is determined within a certain range. The range depends upon instruments, quality of measurements taken and the confidence level at which the final result is to be stated. Leaving aside the formal definition, half of this range may be called uncertainty of measurement. The uncertainty in a measurement result will depend upon all the three aforesaid elements. Therefore, quantifying a measurable quantity through any measurement process is meaningful only if the value of the quantity measured is given with a proper unit of measurement and is accompanied by an overall uncertainty in measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Giacomo, Equation for the determination of density of moist air (1981). Metrologia 18, 33–40 (1982)

    Article  ADS  Google Scholar 

  2. R.S. Davis, Equation for the determination of density of moist air(1981/1991). Metrologia 29, 67–70 (1992)

    Article  ADS  Google Scholar 

  3. A. Picard, H. Fang, Three methods of determining the density of moist air during mass comparisons. Metrologia 39, 31–40 (2002)

    Article  ADS  Google Scholar 

  4. A. Picard, H. Fang, M. Glaser, Discrepancy in air density determination between thermodynamic formula and gravimetric method: evidence for a new value of mole fraction of argon in air. Metrologia 41, 396–400 (2004)

    Article  ADS  Google Scholar 

  5. S.Y. Park et al., A re-determination of the argon content of air for buoyancy correction in mass standard comparisons. Metrologia 41, 387–395 (2004)

    Article  ADS  Google Scholar 

  6. CIPM, Revised formula for density of air (CIPM-2007). Metrologoia 45, 149–155 (2008)

    Google Scholar 

  7. R. Kaarls, NIPM Proc. Verb.com.Int. Poise et Mesure 49, A1–A12 (1981)

    Google Scholar 

  8. P. Giacomo, Metrologia 17, 73–74 (1980)

    Google Scholar 

  9. P. Giacomo, Metrologia 18, 43–44 (1982)

    ADS  Google Scholar 

  10. P. Giacomo, Metrologia 24, 49–50 (1987)

    Article  ADS  Google Scholar 

  11. ISO, IEC, OIML and BIPM, Guide to the Expression of Uncertainty in Measurement. (ISO/TAG 4/WG 3, 1995)

    Google Scholar 

  12. K. Raghu, Bayesian alternative to ISO GUMs use of the Welch-Saitterthwaite formula. Metrologia 43, 1–11 (2006)

    Article  Google Scholar 

  13. W. Birch, L. Callegaro, F. Pennechhi, Non-linear models and best estimator in Gum. Metrologia 43, S196–S199 (2006)

    Article  ADS  Google Scholar 

  14. K. Raghu, B. Toman, D. Huang, Comparison of ISO GUM, draft GUM Supplement and Bayesian Statistics using simple linear calibration. Metrologia 43, S167–S177 (2006)

    Article  Google Scholar 

  15. M.G. Cox, M.R.L. Siebert, The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia 43, S178–S188 (2006)

    Article  ADS  Google Scholar 

  16. S.V. Crowder, R.D. Moyer, A two stage Monte Carlo approach to the expression of Uncertainty with non-Linear measurement equation with small size. Metrologia 43, 34–41 (2006)

    Article  ADS  Google Scholar 

  17. R. Willink, On using Monte Carlo method to calculate uncertainty intervals. Metrologia 43, L39–L42 (2006)

    Article  ADS  Google Scholar 

  18. W. Bich, L. Callegaro, F. Pennecchi, Non-linear models and best estimator in the GUM. Metrologia 43, S161–S166

    Google Scholar 

  19. JCGM, Supplement 1 to the Guide to the expression of uncertainty in measurement – Propagation of distribution functions, page 18, (2008)

    Google Scholar 

  20. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis(Chapman and Hall, London, 2004)

    MATH  Google Scholar 

  21. P.M. Lee, Bayesian Statistics(Oxford University Press, New York, 1997)

    MATH  Google Scholar 

  22. I. Lira, W. Woger, Comparison between conventional Bayesian approaches to evaluate measurement data. Metrologia 43, S249–S259 (2006)

    Article  ADS  Google Scholar 

  23. I. Lira, Bayesian evaluation of comparison data. Metrologia 43, S231–S234 (2006)

    Google Scholar 

  24. A. Balsamo, G. Mana, F. Pennecchi, The expression of uncertainty in non-linear parameter estimates. Metrologia 43, 396–402 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, S.V. (2012). Calculation of Uncertainty. In: Measurement Uncertainties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20989-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20989-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20988-8

  • Online ISBN: 978-3-642-20989-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics