Skip to main content

Transient Dynamics of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile

  • Chapter
  • First Online:
Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 534 Accesses

Abstract

The dynamic stability with respect to small pertubations, as well as the local damage of geometrically nonlinear elastic spatially curved open section beams with axial precompression have been analyzed. Transient waves, which are the surfaces of strong discontinuity and wherein the stress and strain fields experience discontinuities, are used as small pertubations, in so doing the discontinuities are considered to be of small values. Such waves are initiated during low-velocity impacts upon thin-walled beams. The theory of discontinuities and the method of ray expansions, which allow one to find the desired fields behind the fronts of the transient waves in terms of discontinuities in time-derivatives of the values to be found, are used as the methods of solution for short-time dynamic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Bolotin, Non-conservative problems of the theory of elastic stability (Pergamon Press, Oxford, 1963, Engl. Trnsl. from Russian ed. by Fizmatlit, Moscow, 1961)

    Google Scholar 

  2. Yu.A. Rossikhin, M.V. Shitikova, The method of ray expansions for solving boundary-value dynamic problems for spatially curved rods of arbitrary cross-section. Acta. Mech. 200, 213–238 (2008)

    Article  MATH  Google Scholar 

  3. A.L. Gol’denveizer, To the theory of thin-walled beams (in Russian). Prikl. Mat. Mekh. 13, 561–596 (1949)

    MathSciNet  Google Scholar 

  4. S.P. Timoshenko, Vibration problems in engineering. (Van Nostrand, New York, 1928)

    MATH  Google Scholar 

  5. V.Z. Vlasov, Thin-walled elastic beams. Published for the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations, Jerusalem (Eng. trnsl. from the 2d Russian Ed. published in 1959 in Moscow). (1961)

    Google Scholar 

  6. Yu.A. Rossikhin, M.V. Shitikova, The impact of a sphere on a Timoshenko thin-walled beam of open section with due account for middle surface extension. ASME. J. Pressure Vessel Tech. 121, 375–383 (1999)

    Article  Google Scholar 

  7. B.A. Korbut, V.I. Lazarev, Equations of flexural-torsional waves in thin-walled bars of open cross section. Int. Appl. Mech. 10, 640–644 (1974)

    Google Scholar 

  8. Yu.A. Rossikhin, M.V. Shitikova, The method of ray expansions for investigating transient wave processes in thin elastic plates and shells. Acta. Mech. 189, 87–121 (2007)

    Article  MATH  Google Scholar 

  9. J.D. Achenbach, D.P. Reddy, Note on wave propagation in linearly viscoelastic media. ZAMP 18, 141–144 (1967)

    Article  MATH  Google Scholar 

  10. Yu.A. Rossikhin, M.V. Shitikova, Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities. Appl. Mech. Rev. 48, 1–39 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Rossikhin .

Appendices

Appendix 1

From Fig. 3.1 it follows that the components of the vectors \({\varvec{\tau}}\left\{ \tau _i \right\} ,\;{\varvec{\upxi}}\left\{ \xi _i \right\} ,\) and \({\mathbf{k}}\left\{k_i \right\},\,{\mathbf{s}}\left\{s_i \right\}\) are connected with each other by the relationships

$$ \tau_i=k_i\cos\varphi+s_i\sin\varphi , $$
(3.136)
$$ \xi_i=-k_i\sin\varphi+s_i\cos\varphi . $$
(3.137)

Substituting (3.136) and (3.137) into Frenet formulas

$$ {\frac{{\hbox{d}}\tau_i}{{\hbox{d}} s}}=-\tau\xi_,. $$
(3.138)
$$ {\frac{{\hbox{d}} \xi_i}{{\hbox{d}} s}}=\tau\tau_i-\ae\lambda_i , $$
(3.139)
$$ {\frac{{\hbox{d}} \lambda_i}{{\hbox{d}} s}}=\ae\xi_i , $$
(3.140)

we obtain

$$ -\;{\frac{{\hbox{d}} k_i}{{\hbox{d}} s}}\sin\varphi+{\frac{{\hbox{d}} s_i}{{\hbox{d}} s}}\cos\varphi= (K+\tau)k_i\cos\varphi+(K+\tau)s_i\sin\varphi-\ae\lambda_i , $$
(3.141)
$$ {\frac{{\hbox{d}} k_i}{{\hbox{d}} s}}\cos\varphi+{\frac{{\hbox{d}} s_i}{{\hbox{d}} s}}\sin\varphi= (K+\tau)k_i\sin\varphi-(K+\tau)s_i\cos\varphi , $$
(3.142)
$$ {\frac{{\hbox{d}} \lambda_i}{{\hbox{d}} s}}=-k_i\ae\sin\varphi+s_i\ae\cos\varphi . $$
(3.143)

Multiplying (3.141) and (3.142) by \(\cos\varphi\) and \(\sin\varphi,\) respectively, and adding the resulting equations yields

$$ {\frac{{\hbox{d}} s_i}{{\hbox{d}} s}}=(K+\tau)k_i-\ae\lambda_i \cos\varphi . $$
(3.144)

Multiplying further Eqs. 3.141 and 3.142 by \(-\sin\varphi\) and \(\cos\varphi,\) respectively, and adding the resulting equations yields

$$ {\frac{{\hbox{d}} k_i}{{\hbox{d}} s}}=-(K+\tau)s_i+\ae\lambda_i \sin\varphi . $$
(3.145)

Formulas (3.144), (3.145) and (3.143) coincide, respectively, with Eqs. 3.15–3.17.

Appendix 2

$$ \begin{aligned} f_{i(k - 1)} \lambda _i &= {\frac{{{\hbox{d}} ^2 \omega _{(k - 1)} }}{{{\hbox{d}} s^2 }}} - \;{\frac{{\hbox{d}} }{{\hbox{d}} s}} \Bigl( \ae\eta _{(k - 1)} \cos \varphi - \ae\theta _{(k - 1)} \sin \varphi \Bigr) \\ &\quad +\ae\sin\varphi \left\{ {\frac{{\hbox{d}}\theta _{(k-1)}}{{\hbox{d}} s}}+\eta _{(k-1)}(K+\tau ) -\omega _{(k-1)}\ae\sin\varphi \right\} \\ &\quad -\ae\cos\varphi \left\{ {\frac{{\hbox{d}}\eta _{(k-1)}}{{\hbox{d}} s}}-\theta _{(k-1)}(K+\tau ) +\omega _{(k-1)}\ae\cos\varphi \right\} \\ &\quad +\widetilde \omega ^{1y}_{(k)}\ae\sin\varphi -\widetilde \omega ^{1y}_{(k)}\ae\cos\varphi , \end{aligned} $$
(3.146)
$$ \begin{aligned} f_{i(k - 1)} k_i &= {\frac{{{\hbox{d}} ^2 \theta _{(k - 1)} }}{{{\hbox{d}} s^2 }}} + (K + \tau )\left\{ {{\frac{{{\hbox{d}} \eta _{(k - 1)} }}{{{\hbox{d}} s}}} - \theta _{(k - 1)} (K + \tau ) + \omega _{(k - 1)} \ae \cos \varphi } \right\} \\ &\quad - \ae \sin \varphi \left\{ {{\frac{{{\hbox{d}} \omega _{(k - 1)} }}{{{\hbox{d}} s}}} + \theta _{(k - 1)} \ae \sin \varphi - \eta _{(k - 1)} \ae \cos \varphi } \right\} \\ &\quad - {\frac{{\hbox{d}} }{{{\hbox{d}} s}}}\Bigl( \omega _{(k - 1)} \ae \sin \varphi -\eta _{(k - 1)} (K + \tau ) \Bigr) + \omega _{(k - 1)}^{1\lambda } \ae \cos \varphi ,\; \end{aligned} $$
(3.147)
$$ \begin{aligned} f_{i(k - 1)} s_i &= {\frac{{{\hbox{d}} ^2 \eta _{(k - 1)} }}{{{\hbox{d}} s^2 }}} - (K + \tau )\left\{ {{\frac{{{\hbox{d}} \theta _{(k - 1)} }}{{{\hbox{d}} s}}} + \eta _{(k - 1)} (K + \tau ) - \omega _{(k - 1)} \ae \sin \varphi } \right\} \\ &\quad + \ae \cos \varphi \left\{ {{\frac{{{\hbox{d}} \omega _{(k - 1)} }}{{{\hbox{d}} s}}} + \theta _{(k - 1)} \ae \sin \varphi - \eta _{(k - 1)} \ae \cos \varphi } \right\} \\ &\quad - {\frac{{\hbox{d}} }{{{\hbox{d}} s}}}\Bigl( \theta _{(k - 1)} (K + \tau ) - \omega _{(k - 1)} \ae \cos \varphi \Bigr) + \omega _{(k - 1)}^{1\lambda } \ae \sin \varphi , \end{aligned} $$
(3.148)
$$F_{1(k - 1)} = \rho G_1^2 {\frac{{\hbox{d}} }{{{\hbox{d}} s}}}\left\{ {{\frac{{{\hbox{d}} \omega _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \ae \left(\eta _{(k - 1)}^0 \cos \varphi - \theta _{(k - 1)}^0 \sin \varphi \right) }+ \ae \left(a_x \cos \varphi + a_y \sin \varphi \right)\omega _{(k - 1)}^{1\lambda } \right\} + 2\ae \rho G_2^2 \left\{ \left(a_x \cos \varphi + a_y \sin \varphi \right) {\frac{{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }}{{{\hbox{d}} s}}} + (K + \tau )\left(a_y \cos \varphi - a_x \sin \varphi \right)\omega _{(k - 1)}^{1\lambda } \right\} + 2\rho G_2^2 (K + \tau )\omega _{(k - 1)}^{1\lambda } +2\ae \rho G_2^2\left\{\cos\varphi \left( \omega _{(k - 1)}^{1 x} -{\frac{{\hbox{d}} \eta _{(k - 1)}^0 }{{\hbox{d}} s}} \right) -\sin\varphi \left( \omega _{(k - 1)}^{1 y}- {\frac{{\hbox{d}} \theta _{(k - 1)}^0 }{{\hbox{d}} s}} \right)\right\} + \rho G_2^2 \ae \left\{- \omega _{(k - 1)}^{1x} \cos \varphi + \omega _{(k - 1)}^{1y} \sin \varphi -\ae \omega _{(k - 1)}^0 \right. +\left. (K + \tau ) \left( \theta _{(k - 1)}^0\cos\varphi + \eta _{(k - 1)}^0\sin\varphi \right) \right\} + f_{i(k - 1)}^0 \lambda _i \sigma _{\lambda \lambda }^0 ,$$
(3.149)
$$ \begin{aligned} F_{2(k - 1)} &= \rho G_2^2 {\frac{{\hbox{d}} }{{{\hbox{d}} s}}}\left\{ {\frac{{{\hbox{d}} \theta _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \omega _{(k - 1)}^{1y} + {\frac{{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }}{{{\hbox{d}} s}}}a_y - (K + \tau )a_x \omega _{(k - 1)}^{1\lambda } \right\} \\ &\quad + \rho G_2^2 (K + \tau )\left\{ {{\frac{{{\hbox{d}} \eta _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \omega _{(k - 1)}^{1x} - {\frac{{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }}{{{\hbox{d}} s}}}a_x - (K + \tau )a_y \omega _{(k - 1)}^{1\lambda } } \right\} \\ &\quad - \rho G_1^2 \ae \left\{ {{\frac{{{\hbox{d}} \omega _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \ae \left(\eta _{(k - 1)}^0 \cos \varphi - \theta _{(k - 1)}^0 \sin \varphi \right) } \right. \\ &\quad + \left. \ae \left(a_x \cos \varphi + a_y \sin \varphi \right) \omega _{(k - 1)}^{1\lambda } \right\}\sin \varphi + f_{i(k - 1)}^0 k_i \sigma _{\lambda \lambda }^0 , \end{aligned} $$
(3.150)
$$ \begin{aligned} F_{3(k - 1)} &= \rho G_2^2 {\frac{{\hbox{d}} }{{{\hbox{d}} s}}}\left\{ {{\frac{{{\hbox{d}} \eta _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \omega _{(k - 1)}^{1x} - {\frac{{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }}{{{\hbox{d}} s}}}a_x - (K + \tau )a_y \omega _{(k - 1)}^{1\lambda } } \right\} \\ &\quad - \rho G_2^2 (K + \tau )\left\{ {\frac{{{\hbox{d}} \theta _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \omega _{(k - 1)}^{1y} + {\frac{{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }}{{{\hbox{d}} s}}}a_y - (K + \tau )a_x \omega _{(k - 1)}^{1\lambda } \right\} \\ &\quad + \rho G_1^2 \ae \left\{ {\frac{{{\hbox{d}} \omega _{(k - 1)}^0 }}{{{\hbox{d}} s}}} - \ae \left(\eta _{(k - 1)}^0 \cos \varphi - \theta _{(k - 1)}^0 \sin \varphi \right) \right. \\ &\quad + \left. \ae \left(a_x \cos \varphi + a_y \sin \varphi \right)\omega _{(k - 1)}^{1\lambda } \right\}\cos \varphi + f_{i(k - 1)}^0 s_i \sigma _{\lambda \lambda }^0 , \end{aligned} $$
(3.151)
$$ \begin{aligned} F_{4(k - 1)} &= \rho G_1^2 {\frac{{\hbox{d}}^2 }{{\hbox{d}} s^2 }}\left[ -\omega _{( k - 1)}^{1x} -\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] \\ &\quad -2\ae^2 \rho G_2^2\left[- \omega _{(k - 1)}^{1x} -\omega _{(k - 1)}^0\ae\cos\varphi +\theta _{(k - 1)}^0 (K + \tau ) \right] \\ &\quad - 2\ae \rho G_2^2 \left[ {\frac{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }{{\hbox{d}} s}}\sin \varphi +(K + \tau )\omega _{( k - 1)}^{1\lambda } \cos \varphi \right] \\ &\quad -\rho G_1^2 {\frac{{\hbox{d}} }{{\hbox{d}} s}}\left( \ae\sin\varphi \omega _{(k - 1)}^{1\lambda }\right) + I_x^{ - 1} \sigma _{\lambda \lambda }^0 \int\limits_F {f_{i(k - 1)} \lambda _i y \;{\hbox{d}} F} , \end{aligned} $$
(3.152)
$$ \begin{aligned} F_{5(k - 1)} &= \rho G_1^2 {\frac{{\hbox{d}}^2 }{{\hbox{d}} s^2}}\left[ -\omega _{( k - 1)}^{1y} +\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] \\ &\quad -2\ae^2 \rho G_2^2\left[- \omega _{(k - 1)}^{1y} +\omega _{(k - 1)}^0\ae\sin\varphi -\eta _{(k - 1)}^0(K + \tau ) \right] \\ &\quad - 2\ae \rho G_2^2 \left[ {\frac{{\hbox{d}} \omega _{(k - 1)}^{1\lambda } }{{\hbox{d}} s}}\cos \varphi - (K + \tau )\omega _{( k - 1)}^{1\lambda } \sin \varphi \right] \\ &\quad -\rho G_1^2 {\frac{{\hbox{d}} }{{\hbox{d}} s}}\left( \ae\cos\varphi \omega _{(k - 1)}^{1\lambda }\right) + I_y^{ - 1} \sigma _{\lambda \lambda }^0 \int\limits_F {f_{i(k - 1)} \lambda _i x \;{\hbox{d}} F} , \end{aligned} $$
(3.153)
$$F_{6 (k - 1)} = - \ae ^2 (2\rho G_2^2+\sigma _{\lambda \lambda }^0) \Bigl\{- \psi _{(k - 1)} + \ae \cos \varphi \left[ -\omega _{( k - 1)}^{1y} +\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] - \left.\ae \sin \varphi \left[ -\omega _{( k - 1)}^{1x} -\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] \right\} +\left( \rho G_1^2 + \sigma _{\lambda \lambda }^0 \right) {\frac{{\hbox{d}}^2 }{{\hbox{d}} s^2}} \Bigl\{ - \psi _{(k - 1)} + \ae \cos \varphi \left[ -\omega _{( k - 1)}^{1y} +\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] -\left. \ae \sin \varphi \left[ -\omega _{( k - 1)}^{1x} -\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] \right\},$$
(3.154)
$$F_{7(k - 1)} = \rho G_2^2 {\frac{{\hbox{d}} }{{\hbox{d}} s}} \left\{ I_p^A {\frac{{\hbox{d}} \omega _{(k - 1)}^{1\lambda }}{{\hbox{d}} s}} \right. +\ae I_y \cos \varphi \left[ -\omega _{( k - 1)}^{1y} +\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] +\ae I_x \sin \varphi \left[ -\omega _{( k - 1)}^{1x} -\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] + \left. a_x F\left(\omega_{(k-1)}^{1x}-{\frac{{\hbox{d}} \eta _{( k - 1)}^0 }{{\hbox{d}} s}}\right) - a_y F\left(\omega_{(k-1)}^{1y}-{\frac{{\hbox{d}} \theta _{( k - 1)}^0 }{{\hbox{d}} s}} \right)\right\} -\rho G_2^2 F(K+\tau )\left\{ a_y \left(\omega_{(k-1)}^{1x}-{\frac{{\hbox{d}} \eta _{( k - 1)}^0 }{{\hbox{d}} s}}\right) + a_x \left(\omega_{(k-1)}^{1y}-{\frac{{\hbox{d}} \theta _{( k - 1)}^0 }{{\hbox{d}} s}} \right)\right\} +\rho G_2^2 (K+\tau )\ae I_y\sin\varphi \left[ -\omega _{( k - 1)}^{1y}+\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] -\rho G_2^2 (K+\tau )\ae I_x\cos\varphi \left[ -\omega _{( k - 1)}^{1x}-\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] +\rho G_1^2 \ae F\left(a_x\cos\varphi +a_y\sin\varphi \right) \left[- {\frac{{\hbox{d}} \omega _{(k - 1)}^0 }{{\hbox{d}} s}} +\ae\left(\eta _{( k - 1)}^0 \cos\varphi -\theta _{( k - 1)}^0 \sin\varphi \right) -\ae(a_x\cos\varphi +a_y\sin\varphi)\omega _{( k - 1)}^{1\lambda }\right] + \rho G_1^2 \ae \left\{ I_y\cos\varphi {\frac{{\hbox{d}} }{{\hbox{d}} s}} \left[ -\omega _{( k - 1)}^{1y}+\omega _{( k - 1)}^0\ae\sin\varphi-(K+\tau )\eta _{( k - 1)}^0\right] \right. +I_x \sin\varphi {\frac{{\hbox{d}} }{{\hbox{d}} s}} \left[ -\omega _{( k - 1)}^{1x}-\omega _{( k - 1)}^0\ae\cos\varphi+(K+\tau )\theta _{( k - 1)}^0\right] - \left. \ae\left(I_y\cos^2\varphi +I_x\sin^2\varphi \right)\omega _{( k - 1)}^{1\lambda }\right\} -\rho G_2^2 F(K+\tau )^2 I_p^A \omega _{(k - 1)}^{1\lambda } +\sigma _{\lambda \lambda }^0 \int\limits_F^{} {\left[ f_{i( k - 1)} s_i ( x - a_x ) -f_{i( k - 1)} k_i ( y - a_y ) \right] {\hbox{d}} F.}$$
(3.155)

Appendix 3

$$ \begin{aligned} A_{0(k)}(s)&=\left\{ G_I^{ - 1} \left( \rho G_1^2 + 2\rho G_2^2 + 2\sigma _{\lambda \lambda }^0 \right)\ae \left[ -\left(a_x \cos \varphi + a_y \sin \varphi \right)\omega _{( k )}^{1\lambda } \right.\right. \\ &\quad + \left.\left. \eta _{( k )}^0 \cos \varphi - \theta _{( k )}^0 \sin \varphi \right] + F_{1(k - 1)} \left| {_{G = G_I } } \right. \right\} {\frac{1}{2\;\rho G_I }}, \end{aligned} $$
(3.156)
$$ \begin{aligned} A_{1(k)}(s)&=\left\{ {2\;\rho G_I } {\frac{{\hbox{d}}}{{\hbox{d}} s}} \left[ \theta _{( k )}^0 (K+\tau )\right] \right. -\ae (\rho G_1^2 + 2\rho G_2^2 + 2\sigma _{\lambda \lambda }^0 ) G_I^{ - 1} \omega _{( k )}^{1\lambda } \sin \varphi \\ &\quad - F_{4(k - 1)} \left| {_{G = G_I } } \right. \Bigr\} {\frac{1}{2\;\rho G_I }}, \end{aligned} $$
(3.157)
$$ \begin{aligned} A_{2(k)}(s)&=\left\{ -2 \rho G_I {\frac{{\hbox{d}}}{{\hbox{d}} s}} \left[\eta _{( k )}^0 (K+\tau )\right] \right. -\ae (\rho G_1^2 + 2\rho G_2^2 + 2\sigma _{\lambda \lambda }^0 ) G_I^{ - 1} \omega _{( k)}^{1\lambda } \cos \varphi \\ &\quad - F_{5(k - 1)} \left| {_{G = G_I } } \right. \Bigr \} {\frac{1}{2\;\rho G_I }}, &(158) \\ \end{aligned} $$
(3.158)
$$ \begin{aligned} A_{3(k)}(s)&=\left\{ -2 \rho G_I {\frac{{\hbox{d}}}{{\hbox{d}} s}} \left[\left(\theta _{( k )}^0 \sin\varphi + \eta _{( k )}^0 \cos\varphi \right) \ae (K+\tau ) \right]\right.\\ &\quad - F_{6(k - 1)} \left| {_{G = G_I } } \right. \Bigr \} {\frac{1}{2\;\rho G_I }}, \end{aligned} $$
(3.159)
$$ \begin{aligned} B_{1(k-1)}&= -\omega _{( k )}^0\ae\cos\varphi -\Bigl\{ 2 G_{II}^{ - 1} \left( {\rho G_1^2 + \sigma _{\lambda \lambda }^0 } \right) \\ &\quad \times {\frac{{\hbox{d}}}{{\hbox{d}} s}}\left[ \omega _{( k - 1)}^{1x} + \omega _{( k-1)}^0 \ae \cos \varphi -\theta_{( k-1)}^0(K+\tau ) \right] \\ &\quad + \ae \left( {\rho G_1^2 + 2\rho G_2^2 + 2\sigma _{\lambda \lambda }^0 } \right)G_{II}^{ - 1} \omega _{( k - 1)}^{1\lambda } \sin \varphi \\ &\quad + F_{4(k - 2)} \left| {_{G = G_{II} } } \right. \Bigr\} G_{II}^2\rho ^{-1} \left( G_2^2 - G_1^2 \right)^{-1}, \end{aligned} $$
(3.160)
$$ \begin{aligned} B_{2(k-1)}&= \omega _{( k )}^0\ae\sin\varphi -\Bigl\{ 2G_{II}^{ - 1} \left( {\rho G_1^2 + \sigma _{\lambda \lambda }^0 } \right) \\ &\quad \times {\frac{{\hbox{d}}}{{\hbox{d}} s}}\left[ \omega _{( k - 1)}^{1y} - \omega _{( k-1)}^0 \ae \sin \varphi + \eta _{( k-1)}^0(K+\tau )\right] \\ &\quad + \ae \left( {\rho G_1^2 + 2\rho G_2^2 + 2\sigma _{\lambda \lambda }^0 } \right)G_{II}^{ - 1} \omega _{( k - 1)}^{1\lambda } \cos \varphi \\ &\quad + F_{5( k - 2)} \left| {_{G = G_{II} } } \right.\Bigr \} G_{II}^2\rho ^{-1} \left( G_2^2 - G_1^2 \right)^{-1}, \end{aligned} $$
(3.161)
$$ \begin{aligned} B_{3(k)}&=\left\{ G_{II}^{ - 1} \ae \left( {\rho G_1^2 + \rho G_2^2 + 2\sigma _{\lambda \lambda }^0 } \right)\omega _{( k )}^0 \sin \varphi \right. + G_{II}^{ - 1} \rho G_2^2 \left( B_{2(k-1)} -\ae \omega _{( k )}^0 \sin \varphi\right) \\ &\quad + F_{2( k - 1)} \left| {_{G = G_{II} } } \right. \Bigr \}\frac{1}{2}\;G_{II} \left( \rho G_2^2 + \sigma _{\lambda \lambda }^0 \right)^{-1}, \end{aligned} $$
(3.162)
$$B_{4(k)}=\left\{ - G_{II}^{ - 1} \ae \left( {\rho G_1^2 + \rho G_2^2 + 2\sigma _{\lambda \lambda }^0 } \right)\omega _{( k )}^0 \cos \varphi \right. + G_{II}^{ - 1} \rho G_2^2 \left( B_{1(k-1)} +\ae \omega _{( k )}^0 \cos \varphi\right) + F_{3( k - 1)} \left| {_{G = G_{II} } } \right. \Bigr \}\frac{1}{2}\;G_{II} \left( \rho G_2^2 + \sigma _{\lambda \lambda }^0 \right)^{-1},$$
(3.163)
$$ \begin{aligned} B_{5(k)}&=\left\{ G_{II}^{ - 1} \ae \left( {\rho G_1^2 + \rho G_2^2 + 2\sigma _{\lambda \lambda }^0 } \right) \left[ B_{1(k-1)}I_x \sin \varphi+B_{2(k-1)}I_y \cos \varphi \right. \right. \\ &\quad +\left. \omega _{( k )}^0 F\left( a_x \cos \varphi + a_y \sin \varphi \right) +\frac{1}{2}\;\omega _{( k )}^0\ae(I_x-I_y)\sin2\varphi \right] \\ &\quad + G_{II}^{ - 1} \rho G_2^2 F\left[ B_{2(k-1)}a_y -B_{1(k-1)} a_x -\omega _{\left( k \right)}^0 \ae\left( a_x \cos \varphi + a_y \sin \varphi \right) \right] \\ &+ F_{7( k - 1)} \left|_{G = G_{II} }, \right. \Bigr\} \frac{1}{2}\;G_{II} \left( \rho G_2^2 + \sigma _{\lambda \lambda }^0 \right)^{-1}. \end{aligned} $$
(3.164)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Yury A. Rossikhin

About this chapter

Cite this chapter

Rossikhin, Y.A., Shitikova, M.V. (2011). Transient Dynamics of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile. In: Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20969-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20969-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20968-0

  • Online ISBN: 978-3-642-20969-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics