Compatibility in Biotrophic Plant–Fungal Interactions: Ustilago maydis and Friends

  • Kerstin Schipper
  • Gunther DoehlemannEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 11)


Biotrophic plant pathogens depend on living host cells during all stages of pathogenic interaction. Ustilago maydis, the causative agent of smut disease induces development of tumors on all aerial organs of its host plant maize. Immediately upon host penetration, biotrophy is established and maintained during fungal proliferation and nutrition up to the formation of sexual spores. This requires an efficient suppression of plant defense responses, in particular host cell death. In the molecular communication between pathogen and its host, secreted effector proteins play essential roles. The actual functions of these effectors, however, still remain largely elusive. To successfully execute the different steps of pathogenic interaction, a tight regulatory network has evolved in the pathogens, coordinating expression of secreted effectors in a stage- and organ-specific manner. In this chapter, we discuss the complex molecular mechanisms that ensure compatibility in the intimate relationship between biotrophic fungi and their plant hosts.


Powdery Mildew Plant Defense Response Appressorium Formation Biotrophic Pathogen Smut Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Regine Kahmann and the Max Planck Institute for Terrestrial Microbiology for continuous support. Our research is funded by grants of the Deutsche Forschungsgemeinschaft (DFG) via Research Group FOR666 and Priority Program SPP1212, the Loewe Center SYNMIKRO, the EMBO STF program and the Deutsche Bundesstiftung Umwelt (DBU).


  1. Abedon BG, Hatfield RD, Tracy WF (2006) Cell wall composition in juvenile and adult leaves of maize (Z. mays). J Agric Food Chem 54:3896–3900PubMedGoogle Scholar
  2. Apoga D, Barnard J, Craighead HG, Hoch HC (2004) Quantification of substratum contact required for initiation of Collectotrichum graminicola appressoria. Fungal Genet Biol 41:1–12PubMedGoogle Scholar
  3. Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ (2003) Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Mol Microbiol 49:1537–1546PubMedGoogle Scholar
  4. Bailey JA, O’Connell JA, Pring RJ, Nash C (1992) Infection strategies of Colletotrichum species. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI, Wallingford, UK, pp 88–120Google Scholar
  5. Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208PubMedGoogle Scholar
  6. Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965–2976PubMedGoogle Scholar
  7. Basse CW (2005) Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol 138:1774–1784PubMedCentralPubMedGoogle Scholar
  8. Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92PubMedGoogle Scholar
  9. Basse CW, Kolb S, Kahmann R (2002) A maize-specifically expressed gene cluster in Ustilago maydis. Mol Microbiol 43:75–93PubMedGoogle Scholar
  10. Bauer R, Oberwinkler F, Vánky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1273–1314Google Scholar
  11. Baumgarten AM, Suresh J, May G, Phillips RL (2007) Mapping QTLs contributing to Ustilago maydis resistance in specific plant tissues of maize. Theor Appl Genet 114:1229–1238PubMedGoogle Scholar
  12. Billet EE, Burnett JH (1978) The host-parasite physiology of the maize smut fungus Ustilago maydis. 11. Translocation of 14C-labelled assimilates in smutted maize plants. Physiol Plant Pathol 12:102–112Google Scholar
  13. Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450PubMedGoogle Scholar
  14. Bölker M, Genin S, Lehmler C, Kahmann R (1995) Genetic regulation of mating and dimorphism in Ustilago maydis. Can J Bot 73:329–342Google Scholar
  15. Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, Kamoun S (2006) The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165–176PubMedGoogle Scholar
  16. Bowman DH (1946) Sporidial fusion in Ustilago maydis. J Agric Res 72:233–243PubMedGoogle Scholar
  17. Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063PubMedGoogle Scholar
  18. Brachmann A, Schirawski J, Müller P, Kahmann R (2003) An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J 22:2199–2210PubMedGoogle Scholar
  19. Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860PubMedCentralPubMedGoogle Scholar
  20. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445PubMedGoogle Scholar
  21. Cánovas D, Pérez-Martín J (2009) Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Fungal Genet Biol 46:190–200PubMedGoogle Scholar
  22. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565PubMedCentralPubMedGoogle Scholar
  23. Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18:243–256PubMedCentralPubMedGoogle Scholar
  24. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500PubMedGoogle Scholar
  25. Christensen JJ (1963) Corn smut induced by Ustilago maydis. Am Phytopathol Soc Monogr 2:1–41Google Scholar
  26. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedGoogle Scholar
  27. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–1055PubMedGoogle Scholar
  28. de Wit PJ (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732PubMedGoogle Scholar
  29. di Stasio M, Brefort T, Mendoza-Mendoza A, Münch K, Kahmann R (2009) The dual specificity phosphatase Rok1 negatively regulates mating and pathogenicity in Ustilago maydis. Mol Microbiol 73:73–88PubMedGoogle Scholar
  30. Dixon RA, Lamb C (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Mol Biol 41:339–367Google Scholar
  31. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893PubMedGoogle Scholar
  32. Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R (2008a) Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165:29–40PubMedGoogle Scholar
  33. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J (2008b) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195PubMedGoogle Scholar
  34. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290PubMedCentralPubMedGoogle Scholar
  35. Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RH, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. Plant Cell 20:1118–1133PubMedCentralPubMedGoogle Scholar
  36. Eichmann R, Schultheiss H, Kogel KH, Hückelhoven R (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol Plant Microbe Interact 17:484–490PubMedGoogle Scholar
  37. Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194Google Scholar
  38. Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds P (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:1–7Google Scholar
  39. Farfsing JW, Auffarth K, Basse CW (2005) Identification of cis-active elements in Ustilago maydis mig2 promoters conferring high-level activity during pathogenic growth in maize. Mol Plant Microbe Interact 18:75–87PubMedGoogle Scholar
  40. Farrar JF (1984) In: Wood RKS, Jellis GJ (eds) In plant, disease: infection damage and loss. Blackwell, OxfordGoogle Scholar
  41. Flor-Parra I, Vranes M, Kämper J, Pérez-Martín J (2006) Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18:2369–2387PubMedCentralPubMedGoogle Scholar
  42. Francis SA, Dewey FM, Gurr SJ (1996) The role of cutinase in germling development and infection by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 49:201–211Google Scholar
  43. García-Muse T, Steinberg G, Pérez-Martín J (2003) Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot Cell 2:494–500PubMedCentralPubMedGoogle Scholar
  44. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedGoogle Scholar
  45. Gosh P (2004) Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68:771–795Google Scholar
  46. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211PubMedGoogle Scholar
  47. Haldar K, Kamoun S, Hiller BS, Ooij C (2006) Common infection strategies of pathogenic eukaryotes. Nat Rev Microbiol 4:922–931PubMedGoogle Scholar
  48. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication; fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–183PubMedGoogle Scholar
  49. Heimel K, Scherer M, Schuler D, Kämper J (2010a) The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell 22:2908–2922PubMedCentralPubMedGoogle Scholar
  50. Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C, Schuler D, Vincon V, Finkernagel F, Flor-Parra I, Kämper J (2010b) The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog 6:e1001035PubMedCentralPubMedGoogle Scholar
  51. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122PubMedGoogle Scholar
  52. Horst RJ, Engelsdorf T, Sonnewald U, Voll LM (2008) Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. J Plant Physiol 165:19–28PubMedGoogle Scholar
  53. Horst RJ, Doehlemann G, Wahl R, Hofmann J, Schmiedl A, Kahmann R, Kämper J, Sonnewald U, Voll LM (2010) Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiol 152:293–308PubMedCentralPubMedGoogle Scholar
  54. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88(24):11281–11284PubMedGoogle Scholar
  55. Inada K, Morimoto Y, Arima T, Murata Y, Kamada T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133–140PubMedGoogle Scholar
  56. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedGoogle Scholar
  57. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedGoogle Scholar
  58. Kahmann R, Steinberg G, Basse C, Feldbrügge M, Kämper J (2000) Ustilago maydis, the causative agent of corn smut disease. In: Kronstad JW (ed) Fungal pathology. Kluwer, Dodrecht, The Netherlands, pp 347–371Google Scholar
  59. Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365PubMedGoogle Scholar
  60. Kämper J (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271:103–110PubMedGoogle Scholar
  61. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101PubMedGoogle Scholar
  62. Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18:1130–1139PubMedGoogle Scholar
  63. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BP, Albrecht C, de Vries SC, Hirt H, Nürnberger T (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17:1116–1122PubMedGoogle Scholar
  64. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403PubMedCentralPubMedGoogle Scholar
  65. Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R (2010) The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol 187:957–968PubMedGoogle Scholar
  66. Kolattukudy PE (2001) Cutin from plants. In: Doi Y, Steinbüchel A (eds) Polyesters I: biological systems and biotechnological production, vol 3. Wiley, Weinheim, pp 1–35Google Scholar
  67. Lahaye T, Bonas U (2001) Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6:479–485PubMedGoogle Scholar
  68. Langdale JA, Kidner CA (1994) Bundle-sheath defective, a mutation that disrupts cellular-differentiation in maize leaves. Development 120:673–681Google Scholar
  69. Latunde-Dada AO (2001) Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2:187–198PubMedGoogle Scholar
  70. Lewis DH (1973) Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48:261–278Google Scholar
  71. Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens – a cytological and physiological evaluation. New Phytol 124:193–213Google Scholar
  72. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356PubMedGoogle Scholar
  73. Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, Vranes M, Kämper J, Kahmann R (2009) Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71:895–911PubMedGoogle Scholar
  74. Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309PubMedCentralPubMedGoogle Scholar
  75. Money NP, Howard RJ (1996) Confirmation of a link between fungal pigmentation, turgor pressure and pathogenicity using a new method of turgor measurement. Fungal Genet Biol 20:217–227Google Scholar
  76. Morgan W, Kamoun S (2007) RXLR effectors of plant pathogenic oomycetes. Curr Opin Microbiol 10:332–338PubMedGoogle Scholar
  77. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45(Suppl 1):S63–S70PubMedGoogle Scholar
  78. Nelson T, Dengler NG (1992) Photosynthetic tissue differentiation in C4 plants. Int J Plant Sci 153:S93–S105Google Scholar
  79. O’Connell RJ, Panstruga R (2006) Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718PubMedGoogle Scholar
  80. Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352PubMedGoogle Scholar
  81. Perfect ES, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2:101–108PubMedGoogle Scholar
  82. Pryce-Jones E, Carver T, Gurr SJ (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 55:175–182Google Scholar
  83. Purdy RE, Kolattukudy PE (1975) Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a non-specific esterase from Fusarium solani f. pisi. Biochemistry 14:2824–2831PubMedGoogle Scholar
  84. Rafiqi M, Gan PH, Ravensdale M, Lawrence GJ, Ellis JG, Jones DA, Hardham AR, Dodds PN (2010) Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell 22:2017–2032PubMedCentralPubMedGoogle Scholar
  85. Rooney HC, Van’t Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786PubMedGoogle Scholar
  86. Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB (2007) A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370–374PubMedCentralPubMedGoogle Scholar
  87. Rowell JB (1955) Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45:370–374Google Scholar
  88. Scherer M, Heimel K, Starke V, Kämper J (2006) The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:2388–2401PubMedCentralPubMedGoogle Scholar
  89. Schirawski J, Böhnert HU, Steinberg G, Snetselaar K, Adamikova L, Kahmann R (2005) ER glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17:1–12Google Scholar
  90. Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667PubMedGoogle Scholar
  91. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793PubMedGoogle Scholar
  92. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603PubMedGoogle Scholar
  93. Skibbe DS, Doehlemann G, Fernandes J, Walbot V (2010) Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89–92PubMedGoogle Scholar
  94. Sleumer HO (1932) Über Sexualität und Zytologie von Ustilago zeae. (Beckm.). Unger Z Botan 25:209–263Google Scholar
  95. Snetselaar KM (1993) Microscopic observation of Ustilago maydis mating interactions. Exp Mycol 17:345–355Google Scholar
  96. Snetselaar KM, Mims CW (1992) Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84:193–203Google Scholar
  97. Snetselaar KM, Mims CW (1993) Infection of maize by Ustilago maydis: light and electron microscopy. Phytopathology 83:843–850Google Scholar
  98. Snetselaar KM, Mims CW (1994) Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol Res 98:347–355Google Scholar
  99. Snetselaar KM, Boelker M, Kahmann R (1996) Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet Biol 20:299–312PubMedGoogle Scholar
  100. Spanu P, Kämper J (2010) Genomics of biotrophy in fungi and oomycetes-emerging patterns. Curr Opin Plant Biol 13:409–414PubMedGoogle Scholar
  101. Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13:1620–1627PubMedGoogle Scholar
  102. Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital Marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252:503–509PubMedGoogle Scholar
  103. Staples RC (2000) Research on the rust fungi during the twentieth century. Annu Rev Phytopathol 38:49–69PubMedGoogle Scholar
  104. Staples RC (2003) A novel gene for rust resistance. Trends Plant Sci 8:149–151PubMedGoogle Scholar
  105. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedGoogle Scholar
  106. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066PubMedCentralPubMedGoogle Scholar
  107. Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178PubMedGoogle Scholar
  108. Teertstra WR, Deelstra HJ, Vranes M, Bohlmann R, Kahmann R, Kämper J, Wösten HA (2006) Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in Ustilago maydis. Microbiology 152:3607–3612PubMedGoogle Scholar
  109. Teertstra WR, van der Velden GJ, de Jong JF, Kruijtzer JA, Liskamp RM, Kroon-Batenburg LM, Müller WH, Gebbink MF, Wösten HA (2009) The filament-specific Rep1-1 repellent of the phytopathogen Ustilago maydis forms functional surface-active amyloid-like fibrils. J Biol Chem 284:9153–9159PubMedGoogle Scholar
  110. Tian M, Huitema E, Da Cunha L, Torto-Alalibo T, Kamoun S (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279(25):26370–26377PubMedGoogle Scholar
  111. Tian M, Win J, Song J, van der Hooren R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377PubMedCentralPubMedGoogle Scholar
  112. Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417PubMedGoogle Scholar
  113. van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430PubMedGoogle Scholar
  114. van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017PubMedCentralPubMedGoogle Scholar
  115. van der Linde K, Kastner C, Kumlehn J, Kahmann R, Doehlemann G (2010) Systemic virus induced gene silencing allows functional characterization of maize genes during the biotrophic interaction with Ustilago maydis. New Phytologist 189(2):471–483Google Scholar
  116. van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJ, Thomma BP (2007) The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant Microbe Interact 20:1092–1101PubMedGoogle Scholar
  117. van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963PubMedCentralPubMedGoogle Scholar
  118. van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253PubMedGoogle Scholar
  119. Wahl R, Wippel K, Goos S, Kämper J, Sauer N (2010a) A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8:e1000303PubMedCentralPubMedGoogle Scholar
  120. Wahl R, Zahiri A, Kämper J (2010b) The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol Microbiol 75(1):208–220PubMedGoogle Scholar
  121. Waller JM, Bigger M, Hillocks RJ (2007) Coffee pests, diseases and their management. CABI, Wallingford, Oxfordshire, p 171Google Scholar
  122. Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733PubMedCentralPubMedGoogle Scholar
  123. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedGoogle Scholar
  124. Wenzler H, Meins F (1987) Persistent changes in the proliferative capacity of maize leaf tissues induced by Ustilago infection. Physiol Mol Plant Pathol 30:309–319Google Scholar
  125. Westerink N, Roth R, van den Burg HA, De Wit PJ, Joosten MH (2002) The AVR4 elicitor protein of Cladosporium fulvum binds to fungal components with high affinity. Mol Plant Microbe Interact 15:1219–1227PubMedGoogle Scholar
  126. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118PubMedGoogle Scholar
  127. Wösten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bölker M, Kahmann R (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15:4274–4281PubMedGoogle Scholar
  128. Zahiri A, Heimel K, Wahl R, Rath M, Kämper J (2010) The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Mol Plant Microbe Interact 23:1118–1129PubMedGoogle Scholar
  129. Zarnack K, Maurer S, Kaffarnik F, Ladendorf O, Brachmann A, Kämper J, Feldbrügge M (2006) Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43:727–738PubMedGoogle Scholar
  130. Zheng Y, Kief J, Auffarth K, Farfsing JW, Mahlert M, Nieto F, Basse CW (2008) The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Mol Microbiol 68:1450–1470PubMedGoogle Scholar
  131. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767PubMedGoogle Scholar
  132. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations