Signalling in Cyanobacteria–Plant Symbioses

  • David G. AdamsEmail author
  • Paula S. Duggan
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 11)


Cyanobacteria are a morphologically diverse and widespread group of phototrophic bacteria, many of which are capable of nitrogen fixation. They form symbioses with a wide range of eukaryotic hosts including fungi (lichens and Geosiphon pyriformis), diatoms, dinoflagellates, sponges, ascidians (sea squirts), corals and plants. The best understood are the plant symbioses, which are the subject of this chapter. In the cyanobacteria–plant associations, the cyanobacteria provide the host with fixed nitrogen and usually adopt a heterotrophic form of nutrition, using fixed carbon supplied by the plant, enabling them to occupy regions of the host, such as the roots, that receive little or no light. Most cyanobacterial symbionts of plants belong to the genus Nostoc, members of which fix nitrogen in specialised cells known as heterocysts, which provide the necessary microoxic environment for the functioning of the oxygen-sensitive enzyme nitrogenase. These cyanobacteria, which are immotile for most of their life cycles, produce specialised motile filaments known as hormogonia, as a means of dispersal and as the infective agents in plant symbioses. Host plants improve their chances of infection by releasing external chemical signals that both stimulate hormogonia formation and serve as chemoattractants. However, within the symbiotic tissue the plant releases hormogonia-repressing factors to ensure the conversion of hormogonia into heterocyst-containing, nitrogen-fixing filaments.


Nitrogen Fixation Plant Symbiosis Nitrogen Starvation Combine Nitrogen Heterocyst Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our thanks go to the authors who gave permission for us to use the images reproduced in this chapter.


  1. Adams DG (2000) Symbiotic interactions. In: Whitton B, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 523–561Google Scholar
  2. Adams DG (2002a) Cyanobacteria in symbiosis with hornworts and liverworts. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 117–135Google Scholar
  3. Adams DG (2002b) The liverwort-cyanobacterial symbiosis. Biol Environ Proc R Ir Acad 102B:27–30Google Scholar
  4. Adams DG (2011) Cyanobacterial symbioses. In: Whitton B (ed.) Ecology of cyanobacteria II. Springer, HeidelbergGoogle Scholar
  5. Adams DG, Duggan PS (1999) Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144:3–33Google Scholar
  6. Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058PubMedGoogle Scholar
  7. Adams DG, Bergman B, Nierzwicki-Bauer SA, Rai AN, Schussler A (2006) Cyanobacterial-plant symbioses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. a handbook on the biology of bacteria, vol 1, 3rd edn, Symbiotic associations, biotechnology, applied microbiology. Springer, New York, pp 331–363Google Scholar
  8. Bergman B (2002) The Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 207–232Google Scholar
  9. Bergman B, Osborne B (2002) The Gunnera-Nostoc symbiosis. Biol Environ Proc R Ir Acad 102B:35–39Google Scholar
  10. Bergman B, Johansson C, Söderbäck E (1992) The Nostoc-Gunnera symbiosis. New Phytol 122:379–400Google Scholar
  11. Bergman B, Rasmussen U, Rai AN (2007a) Cyanobacterial associations. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer, Dordrecht, pp 257–301Google Scholar
  12. Bergman B, Zheng W, Ekman M, Ran L (2007b) The cyanobacterium-Azolla symbiosis: interactions and cell differentiation. Comp Biochem Physiol A Mol Integr Physiol 146A:S218Google Scholar
  13. Bergman B, Ran L, Adams DG (2008) Cyanobacterial-plant symbioses: signaling and development. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister, Norfolk, pp 447–473Google Scholar
  14. Berry AM, Rasmussen U, Bateman K, Huss-Danell K, Lindwall S, Bergman B (2002) Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of Alnus spp. New Phytol 155:469–479Google Scholar
  15. Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53:745–754PubMedGoogle Scholar
  16. Black K, Osborne B (2004) An assessment of photosynthetic downregulation in cyanobacteria from the Gunnera-Nostoc symbiosis. New Phytol 162:125–132Google Scholar
  17. Brenner ED, Stevenson DW, Twigg RW (2003) Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci 8:446–452PubMedGoogle Scholar
  18. Burrows LL (2005) Weapons of mass retraction. Mol Microbiol 57:878–888PubMedGoogle Scholar
  19. Campbell EL, Wong FCY, Meeks JC (2003) DNA binding properties of the HrmR protein of Nostoc punctiforme responsible for transcriptional regulation of genes involved in the differentiation of hormogonia. Mol Microbiol 47:573–582PubMedGoogle Scholar
  20. Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC (2007) Global gene expression patterns of Nostoc punctiforme in steady state dinitrogen-grown heterocyst-containing cultures, and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189:5247–5256PubMedCentralPubMedGoogle Scholar
  21. Campbell EL, Christman H, Meeks JC (2008) DNA microarray comparisons of plant factor- and nitrogen deprivation-induced hormogonia reveal decision-making transcriptional regulation patterns in Nostoc punctiforme. J Bacteriol 190:7382–7391PubMedCentralPubMedGoogle Scholar
  22. Carrapico F (2002) The Azolla-Anabaena-bacteria system as a natural microcosm. In: Hoover RB, Levin GV, Paepe RR, Rozanov AY (eds) Instruments, methods, and missions for astrobiology IV, Proceedings of SPIE vol 4495, pp 261–265Google Scholar
  23. Chapman KE, Duggan PS, Billington NA, Adams DG (2008) Mutation at different sites in the Nostoc punctiforme cyaC gene, encoding the multiple-domain enzyme adenylate cyclase, results in different levels of infection of the host plant Blasia pusilla. J Bacteriol 190:1843–1847PubMedCentralPubMedGoogle Scholar
  24. Chiu WL, Peters GA, Levieille G, Still PC, Cousins S, Osborne B, Elhai J (2005) Nitrogen deprivation stimulates symbiotic gland development in Gunnera manicata. Plant Physiol 139:224–230PubMedCentralPubMedGoogle Scholar
  25. Choudhury A, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227Google Scholar
  26. Cohen MF, Yamasaki H (2000) Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme. J Bacteriol 182:4644–4646PubMedCentralPubMedGoogle Scholar
  27. Cohen MF, Sakihama Y, Takagi YC, Ichiba T, Yamasaki H (2002) Synergistic effect of deoxyanthocyanins from symbiotic fern Azolla spp. on hrmA gene induction in the cyanobacterium Nostoc punctiforme. Mol Plant Microbe Interact 15:875–882PubMedGoogle Scholar
  28. Costa JL, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 195–205Google Scholar
  29. Costa JL, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396PubMedCentralPubMedGoogle Scholar
  30. Costa JL, Romero EM, Lindblad P (2004) Sequence based data supports a single Nostoc strain in individual coralloid roots of cycads. FEMS Microbiol Ecol 49:481–487PubMedGoogle Scholar
  31. DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920PubMedGoogle Scholar
  32. DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130PubMedGoogle Scholar
  33. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181PubMedGoogle Scholar
  34. Diaz E-M, Sacristan M, Legaz M-E, Vicente C (2009) Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina. Plant Signal Behav 4:598–603PubMedCentralPubMedGoogle Scholar
  35. Duckett JG, Burch J, Fletcher PW, Matcham HW, Read DJ, Russell AJ, Pressel S (2004) In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. J Bryol 26:3–20Google Scholar
  36. Duggan PS, Gottardello P, Adams DG (2007) Molecular analysis of genes in Nostoc punctiforme involved in pilus biogenesis and plant infection. J Bacteriol 189:4547–4551PubMedCentralPubMedGoogle Scholar
  37. Ekman M, Tollback P, Klint J, Bergman B (2006) Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 19:1251–1261PubMedGoogle Scholar
  38. Elifio SL, Da Silva M, Iacomini M, Gorin PAJ (2000) A lectin from the lichenized Basidiomycete Dictyonema glabratum. New Phytol 148:327–334Google Scholar
  39. Flores E, Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33:164–167PubMedGoogle Scholar
  40. Flores E, Herrero A (2010) Compartmentalised function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50PubMedGoogle Scholar
  41. Gantar M (2000a) Mechanical damage of roots provides enhanced colonization of the wheat endorhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. Biol Fertil Soils 32:250–255Google Scholar
  42. Gantar M (2000b) Co-cultivation of N2-fixing cyanobacterium Nostoc sp strain 2S9B and wheat callus. Symbiosis 29:1–18Google Scholar
  43. Gaspar Y, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan proteins and the journey towards understanding function. Plant Mol Biol 47:161–176PubMedGoogle Scholar
  44. Gehringer MM, Pengelly JJL, Cuddy WS, Fieker C, Forster PI, Neilan BA (2010) Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). Mol Plant Microbe Interact 23:811–822PubMedGoogle Scholar
  45. Gentili F, Nilsson MC, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56:3121–3127PubMedGoogle Scholar
  46. Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:557–563PubMedGoogle Scholar
  47. Gorelova OA (2001) Surface ultrastructure of the heteromorphic cells of Nostoc muscorum CALU 304 in a mixed culture with the Rauwolfia callus tissue. Microbiology 70:285–294Google Scholar
  48. Gorelova OA (2006) Communication of cyanobacteria with plant partners during association formation. Microbiology 75:465–469Google Scholar
  49. Gorelova OA, Baulina OI (2009) Ultrastructure of cyanobacterium Nostoc sp f. Blasia cell forms in persisting populations. Microbiology 78:609–617Google Scholar
  50. Gorelova OA, Kleimenov SY (2003) The accumulation and degradation dynamics of cyanophycin in cyanobacterial cells grown in symbiotic associations with plant tissues and cells. Microbiol 72:318–326Google Scholar
  51. Gorelova OA, Korzhenevskaya TG (2002) Formation of giant and ultramicroscopic forms of Nostoc muscorum CALU 304 during cocultivation with Rauwolfia tissues. Microbiol 71:563–569Google Scholar
  52. Guevara R, Armesto JJ, Caru M (2002) Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting. Microb Ecol 44:127–136PubMedGoogle Scholar
  53. Gusev MV, Baulina OI, Gorelova OA, Lobakova ES, Korzhenevshaya TG (2002) Artificial cyanobacterium-plant symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 253–312Google Scholar
  54. Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487PubMedGoogle Scholar
  55. Houle D, Gauthier SB, Paquet S, Planas D, Warren A (2006) Identification of two genera of N2-fixing cyanobacteria growing on three feather moss species in boreal forests of Quebec, Canada. Can J Bot 84:1025–1029Google Scholar
  56. Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30Google Scholar
  57. Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51Google Scholar
  58. Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, Elhai J, Chiu W-L (2010) Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol 154:1381–1389PubMedCentralPubMedGoogle Scholar
  59. Klint J, Ran L, Rasmussen U, Bergman B (2006) Identification of developmentally regulated proteins in cyanobacterial hormogonia using a proteomic approach. Symbiosis 41:87–95Google Scholar
  60. Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Biol Environ Proc R Ir Acad 102B:11–14Google Scholar
  61. Kluge M, Mollenhauer D, Wolf E, Shussler A (2002) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30Google Scholar
  62. Knight CD, Adams DG (1996) A method for studying chemotaxis in nitrogen fixing cyanobacterium-plant symbioses. Physiol Mol Plant Pathol 49:73–77Google Scholar
  63. Lechno-Yossef S, Nierzwicki-Bauer SA (2002) Azolla-Anabaena symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 153–178Google Scholar
  64. Legaz M-E, Fontaniella B, Millanes A-M, Vicente C (2004) Secreted arginases from phylogenetically far-related species act as cross-recognition factors for two different algal cells. Eur J Cell Biol 83:435–446PubMedGoogle Scholar
  65. Lehr H, Galun M, Ott S, Jahns HM, Fleminger G (2000) Cephalodia of the lichen Peltigera aphthosa (L.) Willd. Specific recognition of the compatible photobiont. Symbiosis 29:357–365Google Scholar
  66. Liaimer A, Bergman B (2004) Phytohormones in cyanobacteria: occurrence and perspectives. In: Tikhonovich I, Lugtenberg B, Provorov N (eds) Biology of plant-microbe interactions. International Society for Molecular Plant Microbe Interactions, St Paul, MN, pp 394–397Google Scholar
  67. Liaimer A, Matveyev A, Bergman B (2001) Isolation of host plant induced cDNAs from Nostoc sp strain PCC 9229 forming symbiosis with the angiosperm Gunnera spp. Symbiosis 31:293–307Google Scholar
  68. Lindblad P (2009) Cyanobacteria in symbiosis with cycads. Microbiol Monogr 8:225–233Google Scholar
  69. Lindblad P, Costa J-L (2002) The cyanobacterial-cycad symbiosis. Biol Environ Proc R Ir Acad 102B:31–33Google Scholar
  70. Lindlbad P, Bergman B, Hofsten AV, Hällblom L, Nylund JE (1985) The cyanobacterium-Zamia symbiosis: an ultrastructural study. New Phytol 101:707–716Google Scholar
  71. Lobakova ES, Dol’nikova GA, Korzhenevshaya TG (2001a) Cyanobacterial-bacterial complexes in plant syncyanoses. Microbiology 70:111–116Google Scholar
  72. Lobakova ES, Shchelmanova AG, Korzhenevskaya TG, Gusev MV (2001b) Infection of plants and plant tissue cultures with cyanobacteria-bacteria complexes. Microbiology 70:299–305Google Scholar
  73. Lobakova ES, Orazova MK, Dobrovol'skaya TG (2003) Microbial complexes occurring on the apogeotropic roots and in the rhizosphere of cycad plants. Microbiology 72:628–633Google Scholar
  74. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedGoogle Scholar
  75. Meeks JC (2003) Symbiotic interactions between Nostoc punctiforme, a multicellular cyanobacterium, and the hornwort Anthoceros punctatus. Symbiosis 35:55–71Google Scholar
  76. Meeks JC (2006) Molecular mechanisms in the nitrogen-fixing Nostoc-bryophyte symbiosis. Prog Molec Subcell Biol 41:165–196Google Scholar
  77. Meeks JC (2009) Physiological adaptations in nitrogen-fixing Nostoc-plant symbiotic associations. In: Pawlowski K (ed) Prokaryotic symbionts in plants, vol 8, Microbiol monographs. Springer, Berlin, pp 181–205Google Scholar
  78. Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121PubMedCentralPubMedGoogle Scholar
  79. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106PubMedGoogle Scholar
  80. Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–403PubMedGoogle Scholar
  81. Muro-Pastor MI, Reyes JC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–38328PubMedGoogle Scholar
  82. Muro-Pastor AM, Reyes JC, Florencio FJ (2005) Ammonium assimilation in cyanobacteria. Photosynth Res 83:135–150PubMedGoogle Scholar
  83. Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Eur J Phycol 3:421–428Google Scholar
  84. Nilsson M, Bergman B, Rasmussen U (2000) Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Arch Microbiol 173:97–102PubMedGoogle Scholar
  85. Nilsson M, Bhattacharya J, Rai AN, Bergman B (2002) Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol 156:517–525Google Scholar
  86. Nilsson M, Rasmussen U, Bergman B (2005) Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 245:139–144PubMedGoogle Scholar
  87. Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390PubMedGoogle Scholar
  88. Nudleman E, Kaiser D (2004) Pulling together with type IV pili. J Mol Microbiol Biotechnol 7:52–62PubMedGoogle Scholar
  89. Osborne B, Sprent JI (2002) Ecology of the Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 233–251Google Scholar
  90. Pabby A, Prasanna BM, Nayak S, Singh AK (2003) Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Mar Biotechnol 41:73–79Google Scholar
  91. Pabby A, Prasanna BM, Singh AK (2004a) Biological significance of Azolla and its utilization in agriculture. Proc Indian Natl Sci Acad B 3:299–333Google Scholar
  92. Pabby A, Prasanna R, Singh PK (2004b) Morphological characterization of cultured and freshly separated cyanobionts (Nostocales, Cyanophyta) from Azolla species. Acta Bot Hung 46:211–223Google Scholar
  93. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S, Rasmussen U, Ventura S (2008a) Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 58:553–564PubMedGoogle Scholar
  94. Papaefthimiou D, Van Hove C, Lejeune A, Rasmussen U, Wilmotte A (2008b) Diversity and host specificity of Azolla cyanobionts. J Phycol 44:60–70Google Scholar
  95. Paulsrud P, Lindblad P (2002) Fasciclin domain proteins are present in Nostoc symbionts of lichens. Appl Environ Microbiol 68:2036–2039PubMedCentralPubMedGoogle Scholar
  96. Rai AN, Soderback E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481Google Scholar
  97. Ran LA, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5:e11486PubMedCentralPubMedGoogle Scholar
  98. Rasmussen U, Nilsson M (2002) Cyanobacterial diversity and specificity in plant symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 313–328Google Scholar
  99. Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 176:204–210PubMedGoogle Scholar
  100. Rasmussen U, Johansson C, Renglin A, Petersson C, Bergman B (1996) A molecular characterization of the Gunnera-Nostoc symbiosis: comparison with Rhizobium- and Agrobacterium-plant interactions. New Phytol 133:391–398Google Scholar
  101. Renzaglia KS, Duff RJ, Nickrent DL, Garbary D (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B Biol Sci 355:769–793PubMedGoogle Scholar
  102. Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213Google Scholar
  103. Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 31–72Google Scholar
  104. Rikkinen J, Virtanen V (2008) Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Exp Bot 59:1013–1021PubMedGoogle Scholar
  105. Sacristan M, Millanes A-M, Legaz M-E, Vicente C (2006) A lichen lectin specifically binds to the alpha-1,4-polygalactoside moiety of urease located in the cell wall of homologous algae. Plant Signal Behav 1:23–27PubMedCentralPubMedGoogle Scholar
  106. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161PubMedGoogle Scholar
  107. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238PubMedGoogle Scholar
  108. Showalter AM (2001) Arabinogalactan proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedGoogle Scholar
  109. Solheim B, Zielke M (2002) Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 137–152Google Scholar
  110. Solheim B, Wiggen H, Roberg S, Spaink HP (2004) Associations between arctic cyanobacteria and mosses. Symbiosis 37:169–187Google Scholar
  111. Sood A, Prasanna R, Prasanna BM, Singh PK (2008a) Genetic diversity among and within cultured cyanobionts of diverse species of Azolla. Folia Microbiol 53:35–43Google Scholar
  112. Sood A, Prasanna R, Singh PK (2008b) Fingerprinting of freshly separated and cultured cyanobionts from different Azolla species using morphological and molecular markers. Aquat Bot 88:142–147Google Scholar
  113. Svenning MM, Eriksson T, Rasmussen U (2005) Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 183:19–26PubMedGoogle Scholar
  114. Thajuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S, Akbarsha MA, Gunasekaran M (2010) Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265PubMedGoogle Scholar
  115. Uheda E, Silvester WB (2001) The role of papillae during the infection process in the Gunnera-Nostoc symbiosis. Plant Cell Physiol 42:780–783PubMedGoogle Scholar
  116. Ungerer JL, Pratte BS, Thiel T (2008) Regulation of fructose transport and its effect on fructose toxicity in Anabaena spp. J Bacteriol 190:8115–8125PubMedCentralPubMedGoogle Scholar
  117. Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar Ecol Evol Perspect 29:178–192Google Scholar
  118. Vaishampayan A, Sinha RP, Hader D-P, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516Google Scholar
  119. van Hove C, Lejeune A (2002a) The Azolla-Anabaena symbiosis. Biol Environ Proc R Ir Acad 102B:23–26Google Scholar
  120. van Hove C, Lejeune A (2002b) Applied aspects of Azolla-Anabaena symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 179–193Google Scholar
  121. Vazquez-Bermudez MF, Herrero A, Flores E (2002) 2-oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett 512:71–74PubMedGoogle Scholar
  122. Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 274:51–78Google Scholar
  123. Villarreal JC, Renzaglia KS (2006) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot 93:693–705Google Scholar
  124. Vivas M, Sacristan M, Legaz M-E, Vicente C (2010) The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol 12:615–621PubMedGoogle Scholar
  125. Wang CM, Ekman M, Bergman B (2004) Expression of cyanobacterial genes involved in heterocyst differentiation and dinitrogen fixation along a plant symbiosis development profile. Mol Plant Microbe Interact 17:436–443PubMedGoogle Scholar
  126. Watts SD (2000) Signalling in the Nostoc-plant symbiosis. PhD thesis, University of Leeds, UK, pp 185Google Scholar
  127. West NJ, Adams DG (1997) Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site. Appl Environ Microbiol 63:4479–4484PubMedCentralPubMedGoogle Scholar
  128. Wong FCY, Meeks JC (2001) The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J Bacteriol 183:2654–2661PubMedCentralPubMedGoogle Scholar
  129. Wong FCY, Meeks JC (2002) Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology 148:315–323PubMedGoogle Scholar
  130. Wouters J, Janson S, Bergman B (2000) The effect of exogenous carbohydrates on nitrogen fixation and hetR expression in Nostoc PCC 9229 forming symbiosis with Gunnera. Symbiosis 28:63–76Google Scholar
  131. Zhang C-C, Laurent S, Sakr S, Peng L, Bedu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375PubMedGoogle Scholar
  132. Zheng WW, Song TY, Bao XD, Bergman B, Rasmussen U (2002) High cyanobacterial diversity in coralloid roots of cycads revealed by PCR fingerprinting. FEMS Microbiol Ecol 40:215–222PubMedGoogle Scholar
  133. Zheng WW, Ran L, Bergman B (2009a) Structural characteristics of the cyanobacterium-Azolla symbiosis. In: Pawlowski K (ed) Prokaryotic symbionts in plants, vol 8, Microbiol monographs. Springer, Heidelberg, pp 235–263Google Scholar
  134. Zheng WW, Bergman B, Chen B, Zheng SP, Xiang G, Rasmussen U (2009b) Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis. New Phytol 181:53–61PubMedGoogle Scholar
  135. Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arct Antarct Alpine Res 34:293–299Google Scholar
  136. Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct Antarct Alpine Res 37:372–378Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Biological Sciences, Institute of Integrative and Comparative BiologyUniversity of LeedsLeedsUK

Personalised recommendations