Skip to main content

Signalling and Communication in the Actinorhizal Symbiosis

  • Chapter
  • First Online:
Book cover Signaling and Communication in Plant Symbiosis

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 11))

Abstract

More than 200 species of non-legume dicotyledonous plants, mostly trees and shrubs, belonging to eight different families and 24 genera can enter actinorhizal symbioses with the nitrogen-fixing actinomycete Frankia. Actinorhizal nodules consist of multiple lobes, each of which displays a lateral root structure with infected cells in the expanded cortex. Whereas the key molecules involved in the molecular dialogue between the symbiotic partners have not yet been characterized, the development of genomic and molecular tools both in Frankia and in some actinorhizal plants has contributed to a better understanding of this original endosymbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloisio N, Felix S, Marechal J, Pujic P, Rouy Z, Vallenet D, Medigue C, Normand P (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 130:440–453

    CAS  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K-I (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    CAS  PubMed  Google Scholar 

  • Auguy F, Abdel-Lateif K, Doumas P, Badin P, Guerin V, Bogusz D, Houcher V (2011) Isoflavonoids pathway activation in actinorhizal symbioses. Funct Plant Biol, in press

    Google Scholar 

  • Bagnarol E, Popovici J, Alloisio N, Maréchal J, Pujic P, Normand P, Fernandez M (2007) Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol Plant 130:380–390

    CAS  Google Scholar 

  • Benoit LF, Berry AM (1997) Flavonoid-like compounds from red alder (Alnus rubra) influence nodulation by Frankia (Actinomycetales). Physiol Plant 99:588–593

    CAS  Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant symbioses. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of biological process. Horizon Scientific Press, Wymondham, UK, pp 207–224

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg RH (1990) Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma 159:35–43

    CAS  Google Scholar 

  • Berg RH (1999) Frankia forms infection threads. Can J Bot 77:1327–1333

    Google Scholar 

  • Berg RH, McDowell L (1987) Endophyte differentiation in Casuarina actinorhizae. Protoplasma 136:104–117

    Google Scholar 

  • Berry AM, Sunnel LA (1990) The infection process and nodule development. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 61–81

    Google Scholar 

  • Berry AM, McIntyre L, McCully M (1986) Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can J Bot 64:292–305

    Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091–6094

    CAS  PubMed  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    CAS  PubMed  Google Scholar 

  • Bhuvaneswari TV, Solheim B (2000) Root-hair interactions in actinorhizal symbioses. In: Ridge RW, Emons AMC (eds) Root hairs – cell and molecular biology. Springer, Heidelberg, pp 311–327

    Google Scholar 

  • Callaham D, Torrey JG (1977) Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can J Bot 51:2306–2318

    Google Scholar 

  • Callaham D, DelTredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    CAS  PubMed  Google Scholar 

  • Callaham D, Newcomb W, Torrey JG, Peterson RL (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica and Comptonia. Bot Gaz 140:S1–S9

    Google Scholar 

  • Capoen W, Goormachtig S, De Rycke R, Schoeyers K, Holsters M (2005) SrSymRK, a plant receptor essential for symbiosome infection. Proc Natl Acad Sci USA 102:10369–10374

    CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    CAS  PubMed  Google Scholar 

  • Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301

    Google Scholar 

  • Charron D, Pingret JL, Chabaud M, Journet EP, Barker DG (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. Plant Physiol 136:3582–3593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-related plant nitrogen-fixing root nodule symbioses with Frankia 16SRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138

    CAS  PubMed  Google Scholar 

  • D’Agostino IB, Deruère J, Kieber JJ (2000) Characterization of the response of the arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    PubMed Central  PubMed  Google Scholar 

  • Dawson JO (1986) Actinorhizal plants: their use in forestry and agriculture. Outlook Agric 15(4):202–208

    Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol VI, Nitrogen-fixing Actinorhizal symbioses. Springer, Heidelberg, pp 199–234

    Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipochitooligosaccharide nodulation factor: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer R, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 317–342

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532–537

    CAS  PubMed  Google Scholar 

  • Diouf D, Sy M-O, Gherbi H, Bogusz D, Franche C (2008) Casuarinaceae. In: Kole CR, Scorza R, Hall TC (eds) Compendium of transgenic crop plants, vol 9, Transgenic forest tree species. Blackwell, Oxford, UK, pp 279–292

    Google Scholar 

  • Duhoux E, Diouf D, Gherbi H, Franche C, Ahée J, Bogusz D (1996) Le nodule actinorhizien. Acta bot Gallica 143:593–608

    Google Scholar 

  • Endre G, Kereszt A, Devei Z, Mihacea S, Kalo P, Kiss G (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    CAS  PubMed  Google Scholar 

  • Franche C, Diouf D, Le QV, N’Diaye A, Gherbi H, Bogusz D, Gobé C, Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J 11:897–904

    CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Geurts R, Federova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    CAS  PubMed  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008a) SymRK defines a common genetic basis for plant root endosymbioses with AM fungi, rhizobia and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932

    CAS  PubMed  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524

    CAS  PubMed  Google Scholar 

  • Gordons A, Stevens JR, Berry AM (1988) Cytokinin secretion by Frankia sp. HFPArI3 in defined medium. Plant Physiol 87:15–16

    Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin RAM, Normand P, Domenach AM (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    CAS  Google Scholar 

  • Hann D (2008) Polyphasic taxonomy of the genus Frankia. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol VI, Nitrogen-fixing actinorhizal symbioses. Springer, Heidelberg, pp 25–47

    Google Scholar 

  • Hemerly AS, Bergouniou C, Van Montagu M, Inzé D, Ferreira P (1992) Gene regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidodpsis thaliana. Proc Natl Acad Sci USA 89:3295–3299

    CAS  PubMed  Google Scholar 

  • Hemerly AS, Ferreira PCG, de Almeida EJ, van Montagu M (1993) cdc2a expression in Arabidopsis thaliana is linked with competence for cell division. Plant Cell 5:1711–1723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hocher V, Auguy F, Argout X, Laplaze L, Franche C, Bogusz D (2006) Expressed sequence – tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol 169:681–688

    PubMed  Google Scholar 

  • Houcher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actionorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 56:700–771

    Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315

    CAS  Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    CAS  Google Scholar 

  • John TR, Rice JM, Johnson JD (2001) Analysis of pFQ12, a 22.4-kb Frankia plasmid. Can J Microbiol 47:608–617

    CAS  PubMed  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    CAS  PubMed  Google Scholar 

  • Kucho K-I, Kakoi K, Yamaura M, Higashi S, Uchiumi T, Abe M (2009) Transient transformation of Frankia by fusion marker genes in liquid culture. Microbes Environ 24:231–240

    PubMed  Google Scholar 

  • Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bisseling T, Bogusz D, Pawlowski K (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112

    CAS  PubMed  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bogusz D, Pawlowski K (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant Microbe Interact 13:113–117

    CAS  PubMed  Google Scholar 

  • Laplaze L, Svistoonoff S, Santi C, Auguy F, Franche C, Bogusz D (2008) Molecular biology of actinorhizal symbioses. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol VI, Nitrogen-fixing actinorhizal symbioses. Springer, Heidelberg, pp 235–259

    Google Scholar 

  • Lavire C, Cournoyer B (2003) Progress on the genetics of the N2-fixing actinorhizal symbiont Frankia. Plant Soil 254:125–137

    CAS  Google Scholar 

  • Lavire C, Louis D, Perriere G, Briolay J, Normand P, Cournoyer B (2001) Analysis of pFQ31, a 8551-bp cryptic plasmid from three symbiotic nitrogen-fixing actinomycete Frankia. FEMS Microbiol Lett 197:111–116

    CAS  PubMed  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet E, AnéJ-M LE, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    CAS  PubMed  Google Scholar 

  • Liu Q, Berry AM (1991) The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis. Protoplasma 163:82–92

    Google Scholar 

  • Madsen LH, Tirichine L, Jurkiewicz A, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat commun 1:1–12

    CAS  PubMed Central  Google Scholar 

  • Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, Logn SR, Schultze M, Ratet P, Oldroyd GED (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mastronunzio JE, Huang Y, Besnon DR (2009) Diminished exoproteome of Frankia spp. in culture and symbiosis. App Environ Microbiol 75:6721–6728

    CAS  Google Scholar 

  • McEwan NR, Green DC, Wheeler CT (1992) Utilisation of the root hair curling reaction in Alnus glutinosa for the assay of nodulation signal compounds. Acta Oecol 13:509–510

    Google Scholar 

  • Miller IM, Baker DD (1985) The initiation, development and structure of root nodules in Elaegnus angustifolia L. (Elaeagnaceae). Protoplasma 128:107–119

    Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Olroyd GE, Long SR (2004) A Ca2+/calmodulin dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    CAS  PubMed  Google Scholar 

  • Newcomb WR, Wood S (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int Rev Cytol 109:1–88

    CAS  PubMed  Google Scholar 

  • Normand P, Fernandez MP (2009) Evolution and diversity of Frankia. Microbiol Monogr 8:103–125

    Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of family Frankiaceae. Int J Syst Bacteriol 46:1–9

    CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Martinez M, Mastronunzio JE, Mullin BC, Nieman J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tvares F, Tomkins JP, Vallenet D, Valverde C, Wall L, Wang Y, Medigue C, Benson DR (2007a) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    PubMed  Google Scholar 

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S, Medigue C (2007b) Exploring the genomes of Frankia. Physiol Plant 130:331–343

    CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphologenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    CAS  PubMed  Google Scholar 

  • Parsons R, Silvester WB, Harris S, Gruijters WTM, Bullivant S (1987) Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol 83:728–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbioses: what are the shared features? Plant Cell 8:1899–1913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlowski K, Sprent J (2008) Comparison between actinorhizal and legume symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, The Netherlands, pp 261–288

    Google Scholar 

  • Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, Bennett M, Laplaze L (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862

    PubMed Central  PubMed  Google Scholar 

  • Prin Y, Rougier M (1987) Preinfection events in the establishment of Alnus-Frankia symbiosis: study of the root hair deformation step. Plant Physiol 6:99–106

    Google Scholar 

  • Rawnsley T, Tisa LS (2007) Development of a physical map for three Frankia strains and a partial genetic map for Frankia EuI1c. Physiol Plant 130:427–439

    CAS  Google Scholar 

  • Reddy SM, Hitchin S, Melayah D, Pandey AK, Raffier C, Henderson J, Marmeisse R, Gay G (2006) The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytol 170:391–400

    CAS  PubMed  Google Scholar 

  • Rodriguez-Barrueco F, De Castro B (1973) Cytokinin-induced pseudonodules in Alnus glutinosa. Physiol Plant 29:277–280

    CAS  Google Scholar 

  • Santi C, von Groll U, Ribeiro A, Chiurazzi M, Auguy F, Bogusz D, Franche C, Pawlowski K (2003) Comparison of nodule induction in legume and actinorhizal symbiosis: the induction of actinorhizal nodules does not involve ENOD40. Mol Plant Microbe Interact 16:808–816

    CAS  PubMed  Google Scholar 

  • Savouré A, Sallaud C, El-Turk J, Zuanazzi J, Ratet P, Schultze M, Kondorosi A, Esnault R, Kondorosi E (1997) Distinct response of Medicago suspension cultures ad roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant J 11:277–287

    Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    CAS  PubMed  Google Scholar 

  • Silvester WB (1976) Ecological and economic significance of the non-legume symbiosis. In: Newton WE, Nyman CJ (eds) Proceedings first international symposium on nitrogen fixation. Washington University Press, Pullman

    Google Scholar 

  • Smolander A, Sarsa M-L (1990) Strains of soil under Betula pendula: behaviour in soil and pure culture. Plant Soil 122:129–136

    Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May G (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121

    CAS  PubMed  Google Scholar 

  • Stevens GA, Berry AM (1988) Cytokinin secretion by Frankia sp. HFPAr13 in defined medium. Plant Physiol 87:15–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    CAS  PubMed  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F, Runions CJ, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) Cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607

    CAS  PubMed  Google Scholar 

  • Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Fevereiro P, Franche C, Bogusz D (2004) Infection-related activation of the Cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Svistoonoff S, Gherbi H, Nambiar-Veetil M, Zhong C, Michalak Z, Laplaze L, Vaissayre V, Auguy F, Hocher V, Doumas P, Bonneau J, Bogusz D, Franche C (2010a) Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50:3–11

    CAS  Google Scholar 

  • Svistoonoff S, Sy M-O, Diagne N, Barker D, Bogusz D, Franche C (2010b) Infection-specific activation of the Medicago truncatula Enod11 early nodulin gene promoter during actinorhizal root nodulation. Mol Plant Microbe Interact 23:740–747

    CAS  PubMed  Google Scholar 

  • Swensen SM, Benson DR (2008) Evolution of actinorhizal host plants and Frankia endosymbionts. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol VI, Nitrogen-fixing Actinorhizal symbioses. Springer, Heidelberg, pp 73–104

    Google Scholar 

  • Sy M-O, Constans L, Obertello M, Geney C, Laplaze L, Auguy F, Hocher V, Bogusz D, Franche C (2006) Analysis of the expression pattern conferred by the PsEnod12B promoter from the early nodulin gene of Pisum sativum in transgenic actinorhizal trees of the Casuarinaceae family. Plant Soil 281:281–289

    CAS  Google Scholar 

  • Sy M-O, Hocher V, Gherbi H, Laplaze L, Auguy F, Bogusz D, Franche C (2007) The cell-cycle promoter cdc2aAt from Arabidopsis thaliana is induced in the lateral roots of the actinorhizal tree Allocasuarina verticillata during the early stages of the symbiotic interaction with Frankia. Physiol Plant 130:409–417

    CAS  Google Scholar 

  • Torrey JG, Tjepkema JD (1979) Symbiotic nitrogen fixation in actinomycete-nodulated plants. Bot Gaz 140(Suppl):i–ii

    Google Scholar 

  • Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valdes M (2008) Frankia ecology. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol VI, Nitrogen-fixing actinorhizal symbioses. Springer, Heidelberg, pp 49–72

    Google Scholar 

  • Valverde C, Wall LG (1999) Time course of nodule development in Discaria trinervis (Rhamnaceae) – Frankia symbiosis. New Phytol 141:345–354

    Google Scholar 

  • van Ghelue M, Lovaas E, Ringo E, Solheim B (1997) Early interaction between Alnus glutinosa and Frankia strain Arl3. Production and specificity of root hair deformation factors. Physiol Plant 99:579–587

    Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 274:51–78

    CAS  Google Scholar 

  • Vijn I, Christiansen H, Lauridsen P, Kardailsky I, Quandt H-J, Broer II, Drenth J, Ostergaard E, van Kammen A, Bisseling T (1995) A 200 bp region of the pea ENOD12 promoter is sufficient for nodule-specific and nod factor induced expression. Plant Mol Biol 28:1103–1110

    CAS  PubMed  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, The Netherlands, pp 147–166

    Google Scholar 

  • Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58:2033–2041

    CAS  PubMed  Google Scholar 

  • Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, De Pamphilis CW, Ma H (2004) Genomic wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wheeler CT, Henson IE (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz 140:52–57

    CAS  Google Scholar 

  • Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3 acetic acid by Frankia. Plant Soil 78:99–104

    CAS  Google Scholar 

  • Xu XD, Kong RQ, de Bruijn FJ, He SY, Murry MA, Newman T, Wolk P (2002) DNA sequence and genetic characterization of plasmid pFQ11 from Frankia alni strain CpI1. FEMS Microbiol Lett 207:103–107

    CAS  PubMed  Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarek K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Franche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franche, C., Bogusz, D. (2012). Signalling and Communication in the Actinorhizal Symbiosis. In: Perotto, S., Baluška, F. (eds) Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20966-6_4

Download citation

Publish with us

Policies and ethics