The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses

  • J. Benjamin Miller
  • Giles E. D. OldroydEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 11)


The roots of at least 80% of all angiosperms are able to engage in symbiotic relationships with arbuscular mycorrhizal (AM) fungi of the group Glomeromycota in order to derive macro- and micro-nutrients from the environment (Brachmann and Parniske, PLoS Biol 4:e239, 2006). Legume roots also form a unique symbiosis with rhizobia in order to derive fixed nitrogen. The establishment of both of these symbioses depends upon signalling between the plant host and the microorganism, of which a number of diffusible signals are essential. Here we discuss the synthesis and role of these diffusible signals for the establishment of both rhizobial and mycorrhizal symbioses.


Arbuscular Mycorrhizal Acyl Chain Diffusible Signal Calcium Spike Root Hair Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340PubMedGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedGoogle Scholar
  3. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedGoogle Scholar
  4. Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506PubMedGoogle Scholar
  5. Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374PubMedCentralPubMedGoogle Scholar
  6. Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91:8418–8422PubMedGoogle Scholar
  7. Awad A, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche produced by maize, millet and sorghum. Plant Growth Regul 48:221–227Google Scholar
  8. Banfalvi Z, Kondorosi A (1989) Production of root hair deformation factors by Rhizobium meliloti nodulation genes in Escherichia coli: HsnD (NodH) is involved in the plant host-specific modification of the NodABC factor. Plant Mol Biol 13:1–12PubMedGoogle Scholar
  9. Becard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO(2) and flavonols. Appl Environ Microbiol 58:821–825PubMedCentralPubMedGoogle Scholar
  10. Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant Microbe Interact 8:252–258Google Scholar
  11. Berck S, Perret X, Quesada-Vincens D, Prome J, Broughton WJ, Jabbouri S (1999) NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. J Bacteriol 181:957–964PubMedCentralPubMedGoogle Scholar
  12. Besserer A, Becard G, Roux C, Sejalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77PubMedCentralPubMedGoogle Scholar
  13. Bloemberg GV, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1994) Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol 11:793–804PubMedGoogle Scholar
  14. Bloemberg GV, Kamst E, Harteveld M, van der Drift KM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995a) A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Mol Microbiol 16:1123–1136PubMedGoogle Scholar
  15. Bloemberg GV, Lagas RM, van Leeuwen S, Van der Marel GA, Van Boom JH, Lugtenberg BJ, Spaink HP (1995b) Substrate specificity and kinetic studies of nodulation protein NodL of Rhizobium leguminosarum. Biochemistry 34:12712–12720PubMedGoogle Scholar
  16. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11Google Scholar
  17. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238PubMedGoogle Scholar
  18. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364PubMedGoogle Scholar
  19. Brachmann A, Parniske M (2006) The most widespread symbiosis on Earth. PLoS Biol 4:e239PubMedCentralGoogle Scholar
  20. Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194PubMedCentralPubMedGoogle Scholar
  21. Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652PubMedCentralPubMedGoogle Scholar
  22. Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507PubMedGoogle Scholar
  23. Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698PubMedGoogle Scholar
  24. Burn JE, Rossen L, Johnston AW (1987) Four classes of mutations in the nodD gene of Rhizobium leguminosarum biovar. viciae that affect its ability to autoregulate and/or activate other nod genes in the presence of flavonoid inducers. Genes Dev 1:456–464Google Scholar
  25. Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169PubMedCentralPubMedGoogle Scholar
  26. Cakici O, Sikorski M, Stepkowski T, Bujacz G, Jaskolski M (2010) Crystal structures of NodS N-methyltransferase from Bradyrhizobium japonicum in ligand-free form and as SAH complex. J Mol Biol 404:874–889PubMedGoogle Scholar
  27. Canter Cremers H, Spaink HP, Wijfjes AH, Pees E, Wijffelman CA, Okker RJ, Lugtenberg BJ (1989) Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Mol Biol 13:163–174PubMedGoogle Scholar
  28. Cardenas L, Dominguez J, Quinto C, Lopez-Lara IM, Lugtenberg BJ, Spaink HP, Rademaker GJ, Haverkamp J, Thomas-Oates JE (1995) Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol Biol 29:453–464PubMedGoogle Scholar
  29. Cardenas L, Dominguez J, Santana O, Quinto C (1996) The role of the nodI and nodJ genes in the transport of Nod metabolites in Rhizobium etli. Gene 173:183–187PubMedGoogle Scholar
  30. Cardenas L, Thomas-Oates JE, Nava N, Lopez-Lara IM, Hepler PK, Quinto C (2003) The role of nod factor substituents in actin cytoskeleton rearrangements in Phaseolus vulgaris. Mol Plant Microbe Interact 16:326–334PubMedGoogle Scholar
  31. Cardenas L, Martinez A, Sanchez F, Quinto C (2008) Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). Plant J 56:802–813PubMedGoogle Scholar
  32. Cardenas L, Quinto C (2008) Reactive oxygen species (ROS) as early signals in root hair cells responding to rhizobial nodulation factors. Plant Signal Behav 3:1101–1102PubMedCentralPubMedGoogle Scholar
  33. Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355PubMedGoogle Scholar
  34. Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF (2005) Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33:2540–2548PubMedCentralPubMedGoogle Scholar
  35. Cloutler J, Laberge S, Castonguay Y, Antoun H (1996) Characterization and mutational analysis of nodHPQ genes of Rhizobium sp. strain N33. Mol Plant Microbe Interact 9:720–728PubMedGoogle Scholar
  36. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190PubMedGoogle Scholar
  37. Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. In: Callow JA (ed) Advances in botanical research. Academic, London, pp 1–62Google Scholar
  38. Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365PubMedGoogle Scholar
  39. Corvera A, Prome D, Prome JC, Martinez-Romero E, Romero D (1999) The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant Microbe Interact 12:236–246PubMedGoogle Scholar
  40. D'Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R–105RPubMedGoogle Scholar
  41. Davis EO, Evans IJ, Johnston AW (1988) Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet 212:531–535PubMedGoogle Scholar
  42. Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz HS, Philip-Hollingsworth S, Salzwedel JL, Chapman K, Appenzeller L, Squartini A et al (1991) Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J Bacteriol 173:5371–5384PubMedCentralPubMedGoogle Scholar
  43. Debelle F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res 14:7453–7472PubMedCentralPubMedGoogle Scholar
  44. Debelle F, Plazanet C, Roche P, Pujol C, Savagnac A, Rosenberg C, Prome JC, Denarie J (1996) The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol 22:303–314PubMedGoogle Scholar
  45. Del Papa MF, Pistorio M, Draghi WO, Lozano MJ, Giusti MA, Medina C, van Dillewijn P, Martinez-Abarca F, Moron Flores B, Ruiz-Sainz JE, Megias M, Puhler A, Niehaus K, Toro N, Lagares A (2007) Identification and characterization of a nodH ortholog from the alfalfa-nodulating Or191-like rhizobia. Mol Plant Microbe Interact 20:138–145PubMedGoogle Scholar
  46. Demont N, Debelle F, Aurelle H, Denarie J, Prome JC (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268:20134–20142PubMedGoogle Scholar
  47. Denarie J, Debelle F, Truchet G, Prome JC (1993) Rhizobium and legume nodulation: a molecular dialogue. In: Palacios R, Mora J, Newton W (eds) New horizons in nitrogen fixation. Kluwer, Dordrecht, pp 19–30Google Scholar
  48. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327PubMedGoogle Scholar
  49. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3:371–390PubMedGoogle Scholar
  50. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170PubMedGoogle Scholar
  51. Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256:998–1000PubMedGoogle Scholar
  52. Ehrhardt DW, Atkinson EM, Faull KF, Freedberg DI, Sutherlin DP, Armstrong R, Long SR (1995) In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J Bacteriol 177:6237–6245PubMedCentralPubMedGoogle Scholar
  53. Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681PubMedGoogle Scholar
  54. Felle HH, Kondorosi É, Kondorosi A, Schultze M (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J 10:295–301Google Scholar
  55. Felle HH, Kondorosi E, Kondorosi A, Schultze M (2000) How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol 124:1373–1380PubMedCentralPubMedGoogle Scholar
  56. Fernandez-Lopez M, D’Haeze W, Mergaert P, Verplancke C, Prome JC, Van Montagu M, Holsters M (1996) Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol 20:993–1000PubMedGoogle Scholar
  57. Fernandez-Lopez M, D'Haeze W, Van Montagu M, Holsters M (1998) Changes in the glycosylation pattern at the reducing end of azorhizobial Nod factors affect nodulation efficiency. FEMS Microbiol Lett 158:237–242Google Scholar
  58. Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90–92Google Scholar
  59. Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360PubMedGoogle Scholar
  60. Fisher RF, Tu JK, Long SR (1985) Conserved nodulation genes in Rhizobium meliloti and Rhizobium trifolii. Appl Environ Microbiol 49:1432–1435PubMedCentralPubMedGoogle Scholar
  61. Fisher RF, Long SR (1993) Interactions of NodD at the nod Box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol 233:336–348PubMedGoogle Scholar
  62. Folch-Mallol JL, Marroqui S, Sousa C, Manyani H, Lopez-Lara IM, van der Drift KM, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink HP, Megias M (1996) Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant Microbe Interact 9:151–163PubMedGoogle Scholar
  63. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401PubMedGoogle Scholar
  64. Geelen D, Mergaert P, Geremia RA, Goormachtig S, Van Montagu M, Holsters M (1993) Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol Microbiol 9:145–154PubMedGoogle Scholar
  65. Geelen D, Leyman B, Mergaert P, Klarskov K, Van Montagu M, Geremia R, Holsters M (1995) NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end. Mol Microbiol 17:387–397PubMedGoogle Scholar
  66. Geiger O, Spaink HP, Kennedy EP (1991) Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4′-phosphopantetheine prosthetic group. J Bacteriol 173:2872–2878PubMedCentralPubMedGoogle Scholar
  67. Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441PubMedCentralPubMedGoogle Scholar
  68. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedGoogle Scholar
  69. Goedhart J, Hink MA, Visser AJ, Bisseling T, Gadella TW Jr (2000) In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls. Plant J 21:109–119PubMedGoogle Scholar
  70. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedGoogle Scholar
  71. Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925–932PubMedGoogle Scholar
  72. Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20(11):2989–3005PubMedCentralPubMedGoogle Scholar
  73. Hamel LP, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806PubMedGoogle Scholar
  74. Hanin M, Jabbouri S, Quesada-Vincens D, Freiberg C, Perret X, Prome JC, Broughton WJ, Fellay R (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Mol Microbiol 24:1119–1129PubMedGoogle Scholar
  75. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedGoogle Scholar
  76. Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW et al (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450PubMedGoogle Scholar
  77. Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc Natl Acad Sci USA 84:8558–8562PubMedGoogle Scholar
  78. Horvath B, Bachem CW, Schell J, Kondorosi A (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product. EMBO J 6:841–848PubMedGoogle Scholar
  79. Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relic B, Prome JC, Broughton WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. J Biol Chem 270:22968–22973PubMedGoogle Scholar
  80. Jabbouri S, Relic B, Hanin M, Kamalaprija P, Burger U, Prome D, Prome JC, Broughton WJ (1998) nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. J Biol Chem 273:12047–12055PubMedGoogle Scholar
  81. Jamil M, Charnikhova T, Verstappen F, Bouwmeester H (2010) Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys 504:123–131PubMedGoogle Scholar
  82. John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90:625–629PubMedGoogle Scholar
  83. Jones D, Nguyen C, Finlay R (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33Google Scholar
  84. Kamst E, van der Drift KM, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol 177:6282–6285PubMedCentralPubMedGoogle Scholar
  85. Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJ, Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 179:2103–2108PubMedCentralPubMedGoogle Scholar
  86. Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518PubMedGoogle Scholar
  87. Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW, Lugtenberg BJ, Spaink HP (1999) Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry 38:4045–4052PubMedGoogle Scholar
  88. Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347PubMedGoogle Scholar
  89. Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749PubMedGoogle Scholar
  90. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedCentralPubMedGoogle Scholar
  91. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828PubMedGoogle Scholar
  92. Krishnan HB, Pueppke SG (1991) Sequence and analysis of the nodABC region of Rhizobium fredii USDA257, a nitrogen-fixing symbiont of soybean and other legumes. Mol Plant Microbe Interact 4:512–520PubMedGoogle Scholar
  93. Laeremans T, Caluwaerts I, Verreth C, Rogel MA, Vanderleyden J, Martinez-Romero E (1996) Isolation and characterization of Rhizobium tropici Nod factor sulfation genes. Mol Plant Microbe Interact 9:492–500PubMedGoogle Scholar
  94. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339Google Scholar
  95. Le Strange KK, Bender GL, Djordjevic MA, Rolfe BG, Redmond JW (1990) The Rhizobium strain NGR234 nodD1 gene product responds to Activation by the simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant Microbe Interact 3:214–220Google Scholar
  96. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784PubMedGoogle Scholar
  97. Li F, Hou B, Chen L, Yao Z, Hong G (2008) In vitro observation of the molecular interaction between NodD and its inducer naringenin as monitored by fluorescence resonance energy transfer. Acta Biochim Biophys Sin (Shanghai) 40:783–789Google Scholar
  98. Lopez-Lara IM, Blok-Tip L, Quinto C, Garcia ML, Stacey G, Bloemberg GV, Lamers GE, Lugtenberg BJ, Thomas-Oates JE, Spaink HP (1996) NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol 21:397–408PubMedGoogle Scholar
  99. Lopez-Lara IM, Kafetzopoulos D, Spaink HP, Thomas-Oates JE (2001) Rhizobial NodL O-acetyl transferase and NodS N-methyl transferase functionally interfere in production of modified Nod factors. J Bacteriol 183:3408–3416PubMedCentralPubMedGoogle Scholar
  100. Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedGoogle Scholar
  101. Lorquin J, Lortet G, Ferro M, Mear N, Dreyfus B, Prome JC, Boivin C (1997a) Nod factors from Sinorhizobium saheli and S. teranga Sesbania-nodulating strains are both arabinosylated and fucosylated, a structural feature specific to Sesbania rostrata symbionts. Mol Plant Microbe Interact 10:879–890Google Scholar
  102. Lorquin J, Lortet G, Ferro M, Mear N, Prome JC, Boivin C (1997b) Sinorhizobium teranga bv. acaciae ORS1073 and Rhizobium sp. strain ORS1001, two distantly related Acacia-nodulating strains, produce similar Nod factors that are O carbamoylated, N methylated, and mainly sulfated. J Bacteriol 179:3079–3083PubMedCentralPubMedGoogle Scholar
  103. Mabood F, Souleimanov A, Khan W, Smith DL (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759–765PubMedGoogle Scholar
  104. Madinabeitia N, Bellogin RA, Buendia-Claveria AM, Camacho M, Cubo T, Espuny MR, Gil-Serrano AM, Lyra MC, Moussaid A, Ollero FJ, Soria-Diaz ME, Vinardell JM, Zeng J, Ruiz-Sainz JE (2002) Sinorhizobium fredii HH103 has a truncated nolO gene due to a −1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant Microbe Interact 15:150–159PubMedGoogle Scholar
  105. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedGoogle Scholar
  106. Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63PubMedGoogle Scholar
  107. Marvel DJ, Kuldau G, Hirsch A, Richards E, Torrey JG, Ausubel FM (1985) Conservation of nodulation genes between Rhizobium meliloti and a slow-growing Rhizobium strain that nodulates a nonlegume host. Proc Natl Acad Sci USA 82:5841–5845PubMedGoogle Scholar
  108. Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedCentralPubMedGoogle Scholar
  109. McIver J, Djordjevic MA, Weinman JJ, Bender GL, Rolfe BG (1989) Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant Microbe Interact 2:97–106PubMedGoogle Scholar
  110. Mergaert P, D'Haeze W, Geelen D, Prome D, Van Montagu M, Geremia R, Prome JC, Holsters M (1995) Biosynthesis of Azorhizobium caulinodans Nod factors. Study of the activity of the NodABCS proteins by expression of the genes in Escherichia coli. J Biol Chem 270:29217–29223PubMedGoogle Scholar
  111. Mergaert P, D'Haeze W, Fernandez-Lopez M, Geelen D, Goethals K, Prome JC, Van Montagu M, Holsters M (1996) Fucosylation and arabinosylation of Nod factors in Azorhizobium caulinodans: involvement of nolK, nodZ as well as noeC and/or downstream genes. Mol Microbiol 21:409–419PubMedGoogle Scholar
  112. Mergaert P, Ferro M, D'Haeze W, van Montagu M, Holsters M, Prome JC (1997) Nod factors of Azorhizobium caulinodans strain ORS571 can be glycosylated with an arabinosyl group, a fucosyl group, or both. Mol Plant Microbe Interact 10:683–687PubMedGoogle Scholar
  113. Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222PubMedGoogle Scholar
  114. Morón B, Soria-Díaz ME, Ault J, Verroios G, Noreen S, Rodríguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megías M, Sousa C (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 12:1029–1040PubMedGoogle Scholar
  115. Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae. New Phytol 188:814–823PubMedGoogle Scholar
  116. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613PubMedGoogle Scholar
  117. Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnology Techniques 13:893–897Google Scholar
  118. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681PubMedCentralPubMedGoogle Scholar
  119. Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729PubMedGoogle Scholar
  120. Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207PubMedGoogle Scholar
  121. Oldroyd GE, Engstrom EM, Long SR (2001a) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedCentralPubMedGoogle Scholar
  122. Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576PubMedGoogle Scholar
  123. Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357PubMedGoogle Scholar
  124. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedGoogle Scholar
  125. Oldroyd GED, Mitra RM, Wais RJ, Long SR (2001b) Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J 28:191–199PubMedGoogle Scholar
  126. Olsthoorn MM, Lopez-Lara IM, Petersen BO, Bock K, Haverkamp J, Spaink HP, Thomas-Oates JE (1998) Novel branched nod factor structure results from alpha-(1–>3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an alpha-(1–>3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 37:9024–9032PubMedGoogle Scholar
  127. Olsthoorn MM, Stokvis E, Haverkamp J, Spaink HP, Thomas-Oates JE (2000) Growth temperature regulation of host-specific modifications of rhizobial lipo-chitin oligosaccharides: the function of nodX is temperature regulated. Mol Plant Microbe Interact 13:808–820PubMedGoogle Scholar
  128. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for Rhizobium symbiosis in nonlegume parasponia. Science 331:909–912PubMedGoogle Scholar
  129. Ovtsyna AO, Geurts R, Bisseling T, Lugtenberg BJ, Tikhonovich I, Spaink HP (1998) Restriction of host range by the sym2 allele of Afghan pea is nonspecific for the type of modification at the reducing terminus of nodulation signals. Mol Plant Microbe Interact 11:418–422Google Scholar
  130. Ovtsyna AO, Rademaker GJ, Esser E, Weinman J, Rolfe BG, Tikhonovich IA, Lugtenberg BJ, Thomas-Oates JE, Spaink HP (1999) Comparison of characteristics of the nodX genes from various Rhizobium leguminosarum strains. Mol Plant Microbe Interact 12:252–258PubMedGoogle Scholar
  131. Pacios Bras C, Jorda MA, Wijfjes AH, Harteveld M, Stuurman N, Thomas-Oates JE, Spaink HP (2000) A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NoIL in Rhizobium leguminosarum. Mol Plant Microbe Interact 13:475–479PubMedGoogle Scholar
  132. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedGoogle Scholar
  133. Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427PubMedCentralPubMedGoogle Scholar
  134. Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425PubMedGoogle Scholar
  135. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedCentralPubMedGoogle Scholar
  136. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedGoogle Scholar
  137. Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and Stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526–1531PubMedCentralPubMedGoogle Scholar
  138. Poinsot V, Belanger E, Laberge S, Yang GP, Antoun H, Cloutier J, Treilhou M, Denarie J, Prome JC, Debelle F (2001) Unusual methyl-branched alpha, beta-unsaturated acyl chain substitutions in the Nod factors of an arctic rhizobium, Mesorhizobium sp. strain N33 (Oxytropis arctobia). J Bacteriol 183:3721–3728PubMedCentralPubMedGoogle Scholar
  139. Price NP, Relic B, Talmont F, Lewin A, Prome D, Pueppke SG, Maillet F, Denarie J, Prome JC, Broughton WJ (1992) Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol Microbiol 6:3575–3584PubMedGoogle Scholar
  140. Quesada-Vincens D, Fellay R, Nasim T, Viprey V, Burger U, Prome JC, Broughton WJ, Jabbouri S (1997) Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 179:5087–5093PubMedCentralPubMedGoogle Scholar
  141. Quesada-Vincens D, Hanin M, Broughton WJ, Jabbouri S (1998) In vitro sulfotransferase activity of NoeE, a nodulation protein of Rhizobium sp. NGR234. Mol Plant Microbe Interact 11:592–600PubMedGoogle Scholar
  142. Quinto C, Wijfjes AH, Bloemberg GV, Blok-Tip L, Lopez-Lara IM, Lugtenberg BJ, Thomas-Oates JE, Spaink HP (1997) Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc Natl Acad Sci USA 94:4336–4341PubMedGoogle Scholar
  143. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedGoogle Scholar
  144. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935PubMedGoogle Scholar
  145. Recourt K, van Brussel AA, Driessen AJ, Lugtenberg BJ (1989) Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 171:4370–4377PubMedCentralPubMedGoogle Scholar
  146. Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635Google Scholar
  147. Remans R, Snoeck C, Verreth C, Croonenborghs A, Luyten E, Ndayizeye M, Martinez-Romero E, Michiels J, Vanderleyden J (2007) Inactivation of the nodH gene in Sinorhizobium sp. BR816 enhances symbiosis with Phaseolus vulgaris L. FEMS Microbiol Lett 266:210–217PubMedGoogle Scholar
  148. Ritsema T, Lugtenberg BJ, Spaink HP (1997) Acyl-acyl carrier protein is a donor of fatty acids in the NodA-dependent step in biosynthesis of lipochitin oligosaccharides by rhizobia. J Bacteriol 179:4053–4055PubMedCentralPubMedGoogle Scholar
  149. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143PubMedGoogle Scholar
  150. Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome JC, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA 93:15305–15310PubMedGoogle Scholar
  151. Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KW, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW (2009) Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. Mol Plant Microbe Interact 22:1546–1554PubMedGoogle Scholar
  152. Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91:3122–3126PubMedGoogle Scholar
  153. Rosas S, Soria R, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161–1168PubMedGoogle Scholar
  154. Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539–545PubMedGoogle Scholar
  155. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794PubMedGoogle Scholar
  156. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 162:625–633PubMedGoogle Scholar
  157. Schlaman HR, Spaink HP, Okker RJ, Lugtenberg BJ (1989) Subcellular localization of the nodD gene product in Rhizobium leguminosarum. J Bacteriol 171:4686–4693PubMedCentralPubMedGoogle Scholar
  158. Schmidt PE, Broughton WJ, Werner D (1994) Nod Factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant Microbe Interact 7:384–390Google Scholar
  159. Schultze M, Staehelin C, Rohrig H, John M, Schmidt J, Kondorosi E, Schell J, Kondorosi A (1995) In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci USA 92:2706–2709PubMedGoogle Scholar
  160. Schumpp O, Deakin WJ (2010) How inefficient rhizobia prolong their existence within nodules. Trends Plant Sci 15:189–195PubMedGoogle Scholar
  161. Schwedock J, Long SR (1990) ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348:644–647PubMedGoogle Scholar
  162. Schwedock JS, Liu C, Leyh TS, Long SR (1994) Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol 176:7055–7064PubMedCentralPubMedGoogle Scholar
  163. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedGoogle Scholar
  164. Shaw SL, Long SR (2003) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol 131:976–984PubMedCentralPubMedGoogle Scholar
  165. Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T (2007) Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol 145:183–191PubMedCentralPubMedGoogle Scholar
  166. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474PubMedGoogle Scholar
  167. Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385Google Scholar
  168. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1987) Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328:337–340Google Scholar
  169. Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJ (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130PubMedGoogle Scholar
  170. Spaink HP, Wijfjes AH, van der Drift KM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJ (1994) Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Mol Microbiol 13:821–831PubMedGoogle Scholar
  171. Spaink HP, Wijfjes AH, Lugtenberg BJ (1995) Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 177:6276–6281PubMedCentralPubMedGoogle Scholar
  172. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633PubMedCentralPubMedGoogle Scholar
  173. Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273PubMedGoogle Scholar
  174. Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285PubMedGoogle Scholar
  175. Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedCentralPubMedGoogle Scholar
  176. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, de Billy F, Prome J-C, Denarie J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673Google Scholar
  177. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro. Appl Environ Microbiol 57:1485–1488PubMedCentralPubMedGoogle Scholar
  178. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedGoogle Scholar
  179. van Brussel AAN, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Kijne JW (1992) Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257:70–72PubMedGoogle Scholar
  180. van der Drift KM, Spaink HP, Bloemberg GV, van Brussel AA, Lugtenberg BJ, Haverkamp J, Thomas-Oates JE (1996) Rhizobium leguminosarum bv. trifolii produces lipo-chitin oligosaccharides with nodE-dependent highly unsaturated fatty acyl moieties. An electrospray ionization and collision-induced dissociation tandem mass spectrometric study. J Biol Chem 271:22563–22569PubMedGoogle Scholar
  181. Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B (eds) Flavonoids in the living system. Plenum, New York, pp 9–33Google Scholar
  182. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311PubMedGoogle Scholar
  183. Wais RJ, Keating DH, Long SR (2002) Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol 129:211–224PubMedCentralPubMedGoogle Scholar
  184. Walker SA, Downie JA (2000) Entry of Rhizobium leguminosarum bv.viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol Plant Microbe Interact 13:754–762PubMedGoogle Scholar
  185. Walker SA, Viprey V, Downie JA (2000) Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers. Proc Natl Acad Sci USA 97:13413–13418PubMedGoogle Scholar
  186. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629PubMedCentralPubMedGoogle Scholar
  187. Westwood JH (2000) Characterization of the Orobanche–Arabidopsis system for studying parasite–host interactions. Weed Sci 48:742–748Google Scholar
  188. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493PubMedCentralPubMedGoogle Scholar
  189. Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119PubMedGoogle Scholar
  190. Yeh KC, Peck MC, Long SR (2002) Luteolin and GroESL modulate in vitro activity of NodD. J Bacteriol 184:525–530PubMedCentralPubMedGoogle Scholar
  191. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedGoogle Scholar
  192. Yoneyama K, Xie X, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65:467–470PubMedGoogle Scholar
  193. Yuen JP, Cassini ST, Toledo De Oliveira T, Nagem TJ, Stacey G (1995) Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis 19:131–140Google Scholar
  194. Zaat SA, Schripsema J, Wijffelman CA, van Brussel AA, Lugtenberg BJ (1989) Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175–188PubMedGoogle Scholar
  195. Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183PubMedGoogle Scholar
  196. Zuanazzi JAS, Clergeot PH, Quirion J-C, Husson H-P, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 11:784–794Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Disease and Stress BiologyJohn Innes CentreNorwichUK

Personalised recommendations