Evolutionary IP Mapping for Efficient NoC-Based System Design Using Multi-objective Optimization

  • Nadia Nedjah
  • Marcus Vinícius Carvalho da Silva
  • Luiza de Macedo Mourelle
Part of the Studies in Computational Intelligence book series (SCI, volume 357)


Network-on-chip (NoC) are considered the next generation of communication infrastructure, which will be omnipresent in most of industry, office and personal electronic systems. In the platform-based methodology, an application is implemented by a set of collaborating intellectual properties (IPs) blocks. In this paper, we use multi-objective evolutionary optimization to address the problem of mapping topologically pre-selected sets IPs, which constitute the set of optimal solutions that were found for the IP assignment problem, on the tiles of a mesh-based NoC. The IP mapping optimization is driven by the area occupied, execution time and power consumption.


Execution Time Intellectual Property Multiobjective Optimization Task Graph Parallel Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–138. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE-EC 6, 182–197 (2002)Google Scholar
  3. 3.
    Dick, R.P.: Embedded System Synthesis Benchmarks Suite (E3S),
  4. 4.
    Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: Task Graphs For Free. In: Proceedings of the 6th International Workshop on Hardware/Software Co-design, pp. 97–101. IEEE Computer Society, Seattle (1998)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and intractability; a guide to the theory of NP-completeness. Freeman and Company, New York (1979)Google Scholar
  7. 7.
    Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NoC architectures under performance constraints. In: ASPDAC: Proceedings of the 2003 Conference on Asia South Pacific Design Automation, Kitakyushu, Japan, pp. 233–239. ACM, New York (2003)CrossRefGoogle Scholar
  8. 8.
    ISO/IEC. ISO/IEC 7498-1:1994: Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model. ISO, Geneva, Switzerland (1994)Google Scholar
  9. 9.
    Jena, R.K., Sharma, G.K.: A multi-objective evolutionary algorithm based optimization model for network-on-chip synthesis. In: ITNG, pp. 977–982. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  10. 10.
    Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J.-P., Forsell, M., Tiensyrjä, K., Hemani, A.: A network on chip architecture and design methodology. In: ISVLSI, pp. 117–124. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  11. 11.
    Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network on chip architecture. In: DSD, pp. 180–189. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  12. 12.
    Lu, P.-F., Chen, T.-C.: Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors. IEEE Transactions on Electron Devices 36(6), 1182–1188 (1989)CrossRefGoogle Scholar
  13. 13.
    Murali, S., De Micheli, G.: Bandwidth-constrained mapping of cores onto NoC architectures. In: DATE, pp. 896–903. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  14. 14.
    Murali, S., De Micheli, G.: SUNMAP: a tool for automatic topology selection and generation for nocs. In: Proceedings of the 41st Annual conference on Design Automation (DAC 2004), June 7-11, pp. 914–919. ACM Press, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Ogras, Y., Hu, J., Marculescu, R.: Key research problems in NoC design: a holistic perspective. In: Eles, P., Jantsch, A., Bergamaschi, R.A. (eds.) Proceedings of the 3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2005, pp. 69–74. ACM, New York (2005)CrossRefGoogle Scholar
  16. 16.
    Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)Google Scholar
  17. 17.
    da Silva, M.V.C., Nedjah, N., Mourelle, L.M.: Evolutionary IP assignment for efficient noc-based system design using multi-objective optimization. In: Proceedings of the Congress of Evolutionary Computation (CEC 2009), Norway, May 18-21, IEEE Press, Los Alamitos (2009), page (submitted)Google Scholar
  18. 18.
    Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)CrossRefGoogle Scholar
  19. 19.
    Watts, P.C., Buley, K.R., Sanderson, S., Boardman, W., Ciofi, C., Gibson, R.: Parthenogenesis in komodo dragons. Nature 444(7122), 1021–1022 (2006)CrossRefGoogle Scholar
  20. 20.
    World Wide Web Consortium (W3C) (2008),
  21. 21.
    Zhou, W., Zhang, Y., Mao, Z.: Pareto based multi-objective mapping IP cores onto NoC architectures. In: APCCAS, pp. 331–334. IEEE, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nadia Nedjah
    • 1
  • Marcus Vinícius Carvalho da Silva
    • 1
  • Luiza de Macedo Mourelle
    • 2
  1. 1.Department of Electronics Engineering and TelecommunicationsState University of Rio de JaneiroBrazil
  2. 2.Department of Systems Engineering and Computation, Engineering FacultyState University of Rio de JaneiroBrazil

Personalised recommendations