Skip to main content

Dynamic Objectives Aggregation Methods in Multi-objective Evolutionary Optimization

  • Chapter
  • 732 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 357))

Abstract

Several approaches for solving multi-objective optimization problems entail a form of scalarization of the objectives. This chapter proposes a study of different dynamic objectives aggregation methods in the context of evolutionary algorithms. These methods are mainly based on both weighted sum aggregations and curvature variations. Since the incorporation of chaotic rules or behaviour in population-based optimization algorithms has been shown to possibly enhance their searching ability, this study proposes to introduce and evaluate also some chaotic rules in the dynamic weights generation process. A comparison analysis is presented on the basis of a campaign of computational experiments on a set of benchmark problems from the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation–The New Experimentalism. Natural Computing Series. Springer, Heidelberg (2006)

    Google Scholar 

  2. Branke, J., Deb, K., Miettinen, K., Słowiński, R.: Multiobjective Optimization. In: Interactive and Evolutionary Approaches, Springer, Heidelberg (2008)

    Google Scholar 

  3. Bucolo, M., Caponetto, R., Fortuna, L., Frasca, M., Rizzo, A.: Does chaos work better than noise? IEEE Circuits and Systems Magazine 2(3), 4–19 (2002)

    Article  Google Scholar 

  4. Burke, E.K., Landa Silva, J.D.: The influence of the fitness evaluation method on the performance of multiobjective search algorithms. European Journal of Operational Research 169, 875–897 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic Sequences to Improve the Performance of Evolutionary Algorithms. IEEE Transactions On Evolutionary Computation 7(3), 289–304 (2003)

    Article  Google Scholar 

  6. Coelho, L.d.S., Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Systems with Applications 34, 1905–1913 (2008)

    Article  Google Scholar 

  7. Coffin, M., Saltzman, M.J.: Statistical Analysis of Computational Tests of Algorithms and Heuristics. INFORMS Journal on Computing 12(1), 24–44 (2000)

    Article  MATH  Google Scholar 

  8. Collette, Y., Siarry, P.: On the Sensitivity of Aggregative Multiobjective Optimization Methods. Journal of Computing and Information Technology 16(1), 1–13 (2008)

    Google Scholar 

  9. Conover, W.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Ehrgott, M., Wiecek, M.: Multiobjective programming. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multicriteria Decision Analysis: State of the Art Surveys, Kluwer Academic Publishers, Boston (2005)

    Google Scholar 

  12. Fleischer, M.: The Measure of Pareto Optima: Applications to Multi-objective Metaheuristics. LNCS, pp. 519–533. Springer, Berlin (2003)

    Google Scholar 

  13. Greenwood, G.W.: Chaotic behavior in evolution strategies. Physica D 109, 343–350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how? In: Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco (2001)

    Google Scholar 

  15. Jin, Y., Okabe, T., Sendhoff, B.: Adapting weighted aggregation for multi-objective evolution strategies. LNCS, pp. 96–110. Springer, Zurich (1993)

    Google Scholar 

  16. Jin, Y.: Effectiveness of weighted aggregation of objectives for evolutionary multiobjective optimization: methods, analysis and applications (2002) (unpublished manuscript)

    Google Scholar 

  17. Jin, Y., Okabe, T., Sendhoff, B.: Solving Three-objective Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and Analysis. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 636–638. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91, 992–1007 (2006)

    Article  Google Scholar 

  19. Li, D.: Convexification of a noninferior frontier. Journal of Optimization Theory and Applications 88(1), 177–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, D., Biswal, M.P.: Exponential transformation in convexifying a noninferior frontier and exponential generating method. Journal of Optimization Theory and Applications 99(1), 183–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals 25, 1261–1271 (2005)

    Article  MATH  Google Scholar 

  22. Lu, H., Zhang, H., Ma, L.: A new optimization algorithm based on chaos. Journal of Zhejiang University SCIENCE A 7(4), 539–542 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Structural Multidisciplinary Optimization 41, 853–862 (2010)

    Article  MathSciNet  Google Scholar 

  24. Messac, A., Sukam, C.P., Melachrinoudis, E.: Aggregate objective functions and Pareto frontiers: required relationships and practical implications. Optimization and Engineering 1, 171–188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Messac, A., Sundararaj, G.J., Tappeta, R.V., Renaud, J.E.: Ability of objective functions to generate points on nonconvex pareto frontiers. AIAA Journal 38(6), 1084–1091 (2000)

    Article  Google Scholar 

  26. Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. John Wiley & Sons, New York (2004)

    Google Scholar 

  27. Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for Multi-Objective optimizations. In: Branke, J., Deb, K., Miettinen, K., Steuer, R.E. (eds.) Practical Approaches to Multi-Objective Optimization. Dagstuhl Seminar Proceedings, vol. 4461 (2005)

    Google Scholar 

  28. Tavazoei, M.S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Applied Mathematics and Computation 187, 1076–1085 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. The MathWorks, Inc. Genetic Algorithm and Direct Search Toolbox, Natick, Massachussetts (2004)

    Google Scholar 

  30. The MathWorks, Inc. Statistics Toolbox, Natick, Massachussetts (2007)

    Google Scholar 

  31. Van Veldhuizen, A.D., Lamont, G.B.: On measuring Multiobjective Evolutionary Algorithm Performance. In: Proceedings of IEEE Congress on Evolutionary Computation - CEC, pp. 204–211 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dellino, G., Fedele, M., Meloni, C. (2011). Dynamic Objectives Aggregation Methods in Multi-objective Evolutionary Optimization. In: Nedjah, N., dos Santos Coelho, L., Mariani, V.C., de Macedo Mourelle, L. (eds) Innovative Computing Methods and Their Applications to Engineering Problems. Studies in Computational Intelligence, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20958-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20958-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20957-4

  • Online ISBN: 978-3-642-20958-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics