Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 357))

Abstract

The objective of this chapter is to develop and solve the reliability optimization problems of series-parallel, parallel-series and complicated system considering the reliability of each component as interval valued number. For optimization of system reliability and system cost separately under resource constraints, the corresponding problems have been formulated as constrained integer/mixed integer programming problems with interval objectives with the help of interval arithmetic and interval order relations. Then the problems have been converted into unconstrained optimization problems by two different penalty function techniques. To solve these problems, two different real coded genetic algorithms (GAs) for interval valued fitness function with tournament selection, whole arithmetical crossover and non-uniform mutation for floating point variables, uniform crossover and uniform mutation for integer variables and elitism with size one have been developed. To illustrate the models, some numerical examples have been solved and the results have been compared. As a special case, taking lower and upper bounds of the interval valued reliabilities of component as same the corresponding problems have been solved and the results have been compared with the results available in the existing literature. Finally, to study the stability of the proposed GAs with respect to the different GA parameters (like, population size, crossover and mutation rates), sensitivity analyses have been shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ha, C., Kuo, W.: Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems. European Journal of Operational Research 171, 124–138 (2006)

    Article  MathSciNet  Google Scholar 

  2. Coelho, L.S.: An efficient particle swarm approach for mixed-integer programming in reliability redundancy optimization applications. Reliability Engineering and System Safety 94, 830–837 (2009)

    Article  Google Scholar 

  3. Tillman, F.A., Hwuang, C.L., Kuo, W.: Optimization technique for system reliability with redundancy: A Review. IEEE Trans. Reliability 26, 148–155 (1977)

    Article  MATH  Google Scholar 

  4. Kuo, W., Prasad, V.R., Tillman, F.A., Hwuang, C.L.: Optimal Reliability Design Fundamentals and application. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Misra, K.B., Sharama, U.: An efficient algorithm to solve integer-programming problems arising in system reliability design. IEEE Trans. Reliability 40, 81–91 (1991)

    Article  MATH  Google Scholar 

  6. Nakagawa, Y., Nakashima, K., Hattori, Y.: Optimal reliability allocation by branch-and-bounded technique. IEEE Trans. Reliability 27, 31–38 (1978)

    Article  MATH  Google Scholar 

  7. Ohtagaki, H., Nakagawa, Y., Iwasaki, A., Narihisa, H.: Smart greedy procedure for solving a nonlinear knapsacclass of reliability optimization problems. Mathl. Comput. Modeling 22, 261–272 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sun, X., Duan, L.: Optimal Condition and Branch and Bound Algorithm for Constrained Redundancy Optimization in Series System. Optimization and Engineering 3, 53–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sun, X.L., Mckinnon, K.I.M., Li, D.: A convexification method for a class of global optimization problems with applications to reliability optimization. Journal of Global Optimization 21, 185–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gen, M., Yun, Y.: Soft computing approach for reliability optimization. Reliability Engineering and System Safety 91, 1008–1026 (2006)

    Article  Google Scholar 

  11. Chern, M.S.: On the computational complexity of reliability redundancy allocation in a series system. Operations Research Letter 11, 309–315 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martorell, S., Sanchez, A., Carlos, S., Serradell, V.: Alternatives and challenges in optimizing industrial safety using genetic algorithms. Reliability Engineering and System Safety 86, 25–38 (2004)

    Article  Google Scholar 

  13. Zhao, J., Liu, Z., Dao, M.: Reliability optimization using multiobjective ant colony system approaches. Reliability Engineering and system safety 92, 109–120 (2007)

    Article  Google Scholar 

  14. Zio, E.: Reliability engineering: Old problems and new challanges. Reliability Engineering and System Safety 94, 125–141 (2009)

    Article  Google Scholar 

  15. Coolen, F.P.A., Newby, M.J.: Bayesian reliability analysis with imprecise prior probabilities. Reliability Engineering and System Safety 43, 75–85 (1994)

    Article  Google Scholar 

  16. Utkin, L.V., Gurov, S.V.: Imprecise reliability of general structures. Knowledge and Information Systems 1(4), 459–480 (1999)

    Google Scholar 

  17. Utkin, L.V., Gurov, S.V.: New reliability models based on imprecise probabilities. In: Hsu, C. (ed.) Advanced Signal Processing Technology, pp. 110–139. World Scientific, Singapore (2001)

    Google Scholar 

  18. Gupta, R.K., Bhunia, A.K., Roy, D.: A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components. Journal of Computational and Applied Mathematics 232, 275–284 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bhunia, A.K., Sahoo, L., Roy, D.: Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm. Applied Mathematics and Computation 216, 929–939 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mahato, S.K., Bhunia, A.K.: Interval-Arithmetic-Oriented Interval Computing Technique for Global Optimization. In: Applied Mathematics Research eXpress 2006, pp. 1–19 (2006)

    Google Scholar 

  21. Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research 48, 219–225 (1990)

    Article  MATH  Google Scholar 

  22. Chanas, S., Kuchta, D.: Multiobjective programming in the optimization of interval objective functions-A generalized approach. European journal of Operational Research 94, 594–598 (1996)

    Article  MATH  Google Scholar 

  23. Goldberg, D.E.: Genetic Algorithms: Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  24. Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley and Sons Inc., Chichester (2000)

    Google Scholar 

  25. Michalawich, Z.: Genetic Algorithms + Data structure = Evaluation Programs. Springer, Berlin (1996)

    Google Scholar 

  26. Sakawa, M.: Genetic Algorithms and fuzzy multiobjective optimization. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  27. Levitin, G.: Genetic algorithms in reliability engineering. Reliability Engineering and System Safety 91, 9751–9976 (2006)

    Google Scholar 

  28. Villanueva, J.F., Sanchez, A.I., Carlos, S., Martorell, S.: Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evoluation and accuracy. Reliability Engineering and System Safety 93, 1830–1841 (2008)

    Article  Google Scholar 

  29. Ye, Z., Li, Z., Xie, M.: Some improvements on adaptive genetic algorithms for reliability-related applications. Reliability Engineering and System Safety 95, 120–126 (2010)

    Article  Google Scholar 

  30. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  31. Aggarwal, K.K., Gupta, J.S.: Penalty function approach in heuristic algorithms for constrained. IEEE Transactions on Reliability 54(3), 549–558 (2005)

    Article  Google Scholar 

  32. Miettinen, K., Makela, M.M., Toivanen, J.: Numerical comparison of some Penalty-Based Constraint Handling Techniques in Genetic Algorithms. Journal of Global Optimization 2, 427–446 (2003)

    Article  MathSciNet  Google Scholar 

  33. Hansen, E., Walster, G.W.: Global optimization using interval analysis. Marcel Dekker Inc., New York (2004)

    MATH  Google Scholar 

  34. Karmakar, S., Mahato, S., Bhunia, A.K.: Interval oriented multi-section techniques for global optimization. Journal of Computation and Applied Mathematics 224, 476–491 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhunia, A.K., Sahoo, L. (2011). Genetic Algorithm Based Reliability Optimization in Interval Environment. In: Nedjah, N., dos Santos Coelho, L., Mariani, V.C., de Macedo Mourelle, L. (eds) Innovative Computing Methods and Their Applications to Engineering Problems. Studies in Computational Intelligence, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20958-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20958-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20957-4

  • Online ISBN: 978-3-642-20958-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics