Magnetic Interactions Governing the Inverse Magnetocaloric Effect in Martensitic Ni–Mn-Based Shape-memory Alloys

  • S. Aksoy
  • M. AcetEmail author
  • T. Krenke
  • E. F. Wassermann
  • M. Gruner
  • P. Entel
  • L. Mañosa
  • A. Planes
  • P. P. Deen
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)


Ni–Mn–X Heusler-type alloys (X: group IIIB–VB elements) undergo martensitic transformations, and many of them exhibit magnetic shape-memory and field-induced effects, one of the most predominant being the inverse magnetocaloric effect. To understand the cause of the inverse magnetocaloric effect, which involves a magnetic entropy increase with applied field, it is necessary to understand the nature of the magnetic coupling in the temperature vicinity of the martensitic transition.We present results on neutron polarization analysis experiments on Ni–Mn-based martensitic Heusler systems, with which we show that around M <M sare antiferromagnetic. We discuss the relationship of the magnetic coupling and the inverse magnetocaloric effect.


Martensitic Transformation Magnetic Coupling Heusler Alloy Forward Scattering Martensite State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank J. Minar and H.C. Herper for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1239) and ILL-Grenoble.


  1. 1.
    A. Planes, L. Mañosa, M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter 21, 233201 (2009)Google Scholar
  2. 2.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966 (1996)CrossRefGoogle Scholar
  3. 3.
    O. Soderberg, A. Sozinov, Y. Ge, S.-P. Hannula, V.K. Lindroos, Giant Magnetostrictive Materials, vol. 16, ed. by K.H.J. Buschow Handbook of Magnetic Materials (Elsevier, Amsterdam, 2006) p. 1Google Scholar
  4. 4.
    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X = In,Sn,Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004)CrossRefGoogle Scholar
  5. 5.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mat. 4, 450 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, A. Labarta, Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B 68, 094401 (2003)CrossRefGoogle Scholar
  7. 7.
    L. Pareti, M. Solzi, F. Albertini, A. Paoluzi, Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2. 19Mn0. 81Ga Heusler alloy, Eur. Phys. J. B 32, 303 (2003)Google Scholar
  8. 8.
    I. Dubenko, M. Khan, A.K. Pathak, B.R. Gautam, S. Stadler, N. Ali, Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X = Ga, Sb,In. J. Magn. Magn. Mater. 321, 754 (2009)CrossRefGoogle Scholar
  9. 9.
    Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Y.W. Du, The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni–Mn–Sb ferromagnetic shape memory alloys. J. Appl. Phys. 104, 053906 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Jing, Z. Li, H.L. Zhang, J.P. Chen, Y.F. Qiao, S.X. Cao, J.C. Zhang, Martensitic transition and inverse magnetocaloric effect in Co doping Ni–Mn–Sn Heulser alloy. Eur. Phys. J. B 67, 193 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Magnetic-field-induced shape recovery by reverse phase transition. Nature 439, 957 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, B. Ouladdiaf, Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006)CrossRefGoogle Scholar
  14. 14.
    V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Large magnetoresistance in Ni50Mn34In16alloy. Appl. Phys. Lett. 89, 222509 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Chatterjee, S. Giri, S. Majumdar, S.K. De, Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1. 36Sn0. 64alloy. J. Phys. D: Appl. Phys. 42, 065001 (2009)Google Scholar
  16. 16.
    V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys. Rev. B 76, 140401R (2007)CrossRefGoogle Scholar
  17. 17.
    W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, T. Kanomata, Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Khan, I. Dubenko, S. Stadler, N. Ali, Exchange bias behavior in Ni–Mn–Sb Heusler alloys. Appl. Phys. Lett. 91, 072510 (2007)CrossRefGoogle Scholar
  19. 19.
    Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, J. Zhang, Observation of exchange bias in the martensitic state of Ni50Mn36Sn14Heusler alloy. Appl. Phys. Lett. 91, 112505 (2007)CrossRefGoogle Scholar
  20. 20.
    A.K. Nayak, K.G. Suresh, A.K. Nigam, Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys. J. Phys. D: Appl. Phys. 42, 115004 (2009)CrossRefGoogle Scholar
  21. 21.
    V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn–Xalloys (X = In, Sn, Sb). Phys. Rev. B 78, 184427 (2008)CrossRefGoogle Scholar
  22. 22.
    M.A. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner, P. Entel, Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 102, 035702 (2009)CrossRefGoogle Scholar
  23. 23.
    A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications(Institute of Physics Publishing, Bristol, 2003)CrossRefGoogle Scholar
  24. 24.
    X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E.F. Wassermann, T. Krenke, Cooling and heating by adiabatic magnetization in the Ni50Mn34In16magnetic shape-memory alloy. Phys. Rev. B 75, 184412 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007)CrossRefGoogle Scholar
  26. 26.
    J.R. Stewart, P.P. Deen, K.H. Andersen, H. Schober, J.-F. Barthélémy, J.M. Hillier, A.P. Murani, T. Hayes, B. Lindenau, Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7. J. Appl. Cryst. 42, 69 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Aksoy, M. Acet, P.P. Deen, L. Mañosa, A. Planes, Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: Neutron polarization analysis. Phys. Rev. B 79, 212401 (2009)CrossRefGoogle Scholar
  28. 28.
    A.I. Liechtenstein, M.I. Katsnelson, V.A. Antropov, V.P. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65 (1987)CrossRefGoogle Scholar
  29. 29.
    Ebert H, in Fully relativistic band structure calculations for magnetic solids – Formalism and Application, ed. by H. Dreysse. Electronic Structure and Physical Properties of Solids, (Springer, Berlin, 1999) p. 191Google Scholar
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Aksoy
    • 1
  • M. Acet
    • 2
    Email author
  • T. Krenke
    • 3
  • E. F. Wassermann
    • 2
  • M. Gruner
    • 4
  • P. Entel
    • 4
  • L. Mañosa
    • 5
  • A. Planes
    • 6
    • 7
  • P. P. Deen
    • 8
  1. 1.Faculty of Engineering & Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Physics DepartmentUniversity of Duisburg-EssenDuisburgGermany
  3. 3.Thyssen Krupp Electrical Steel GmbHGelsenkirchenGermany
  4. 4.Faculty of Physics & CeNIDEUniversity Duisburg-EssenDuisburgGermany
  5. 5.Departament d’Estructura i Constituents de la Matèria, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain
  6. 6.Facultat de Física, Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  7. 7.Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain
  8. 8.European Spallation Source ESS ABLundSweden

Personalised recommendations