Skip to main content

Conclusion and Outlook

With the Off-Set from the Prototypical Martensitic Materials

  • Chapter
  • First Online:
Disorder and Strain-Induced Complexity in Functional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

  • 1589 Accesses

Abstract

General aspects of functionality are discussed: The ability to change according to variations in the external conditions. The Martensitic materials were among the first metals discovered to show functionality, as a rapid change in shape at a given temperature. This has for thousands of years been of vital technological importance. Understanding this phenomenon forms the basis for understanding related phenomena in the numerous recently discovered materials, discussed in the previous chapters. In these, the changes can be induced and tuned by, for example, magnetic or electric fields. It would extend too far to attempt to survey all this here – and fortunately, since the martensites are sufficiently rich, that the principles – and the possibilities can be gauged from a knowledge of martensites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alexander, J. McTague, Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978)

    Article  CAS  Google Scholar 

  2. P.-A. Lindgård, O.G. Mouritsen, Theory and model for Martensitic transformations. Phys. Rev. Lett. 57, 2454 (1986)

    Article  Google Scholar 

  3. Y. Ashida, M. Yamamoto, S. Naito, M Mabuchi, T. Hashino, Calculation of the Lindgård and Mouritsen’s free energy using recently measured moduli of elasticity for hydrogen in zirconium. J. Appl. Phys. 80, 3259 (1996)

    Google Scholar 

  4. W. Petry, Dynamical precursors in Martensitic transitions. J. de Phys. III Suppl., Colloque C2–15, 5 (1995)

    Google Scholar 

  5. W. Petry et al., Phonon-dispersion of the bcc phase of group-iv metals.2. Bcc zirconium, a model case of dynamic precursors of martensitic transitions. Phys. Rev B 43, 10948 (1991)

    Google Scholar 

  6. J. Zhang, Y. Zhan, Formation of zirconium metallic glass. Nature 430, 332 (2004)

    CAS  Google Scholar 

  7. J. Zhang, Y Zhan, Formation of zirconium metallic glass. Nature 437, 1957 (2005)

    Google Scholar 

  8. T. Hattori, H. Saitoh, H. Kaneko, Y. Okajima, K. Aoki, W. Utsumi, Does bulk metallic glass of elemental Zr and Ti exist? Phys. Rev. Lett. 96, 255504 (2006)

    Article  Google Scholar 

  9. O. Kastner, J. Ackland, Mesoscale kinetics produces Martensitic microstructure. J. Mech. Phys. Solids 57, 109 (2009)

    Article  CAS  Google Scholar 

  10. J.R. Morris, K.M. Ho, Molecular dynamic simulation of a homogeneous bcc- > hcp transition. Phys. Rev. B 63, 224116 (2001)

    Article  Google Scholar 

  11. V.Yu. Trubitsin, E.B. Dolgusheva, Anharmonic effects and vibrational spectrum of bcc Zr under pressure studied by molecular dynamics simulations. Phys. Rev. B 76, 024308 (2007)

    Article  Google Scholar 

  12. Y. Ye, Y. Chen, K.-M. Ho, B.N. Harmon, P.-A Lindgård, Phonon-phonon coupling and the stability of the high-temperature bcc phase of Zr. Phys. Rev. Lett. 58, 1769 (1987)

    Google Scholar 

  13. P. Souvatzis, O. Eriksson, M.I. Katnelson, S.P. Rudin, Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008)

    Article  CAS  Google Scholar 

  14. S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-Glass nature of tweed precursors in Martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)

    Article  Google Scholar 

  15. P.-A Lindgård, What determines the Martensitic transition temperature in alloys? J. de Phys. III Suppl. Colloque, C2–29, 5 (1995)

    Google Scholar 

  16. S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50 − x Ni50 + x . Phys. Rev. Lett. 95, 205702 (2005)

    Article  Google Scholar 

  17. P.V. Hendriksen, S. Linderoth, P.-A. Lindgård, Phys. Rev. 48, 7259 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Anker Lindgård .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindgård, PA. (2012). Conclusion and Outlook. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics