Conclusion and Outlook

With the Off-Set from the Prototypical Martensitic Materials
  • Per-Anker LindgårdEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)


General aspects of functionality are discussed: The ability to change according to variations in the external conditions. The Martensitic materials were among the first metals discovered to show functionality, as a rapid change in shape at a given temperature. This has for thousands of years been of vital technological importance. Understanding this phenomenon forms the basis for understanding related phenomena in the numerous recently discovered materials, discussed in the previous chapters. In these, the changes can be induced and tuned by, for example, magnetic or electric fields. It would extend too far to attempt to survey all this here – and fortunately, since the martensites are sufficiently rich, that the principles – and the possibilities can be gauged from a knowledge of martensites.


Martensitic Transformation Shape Memory Effect Martensitic Transition Tweed Structure Landau Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Alexander, J. McTague, Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978)CrossRefGoogle Scholar
  2. 2.
    P.-A. Lindgård, O.G. Mouritsen, Theory and model for Martensitic transformations. Phys. Rev. Lett. 57, 2454 (1986)CrossRefGoogle Scholar
  3. 3.
    Y. Ashida, M. Yamamoto, S. Naito, M Mabuchi, T. Hashino, Calculation of the Lindgård and Mouritsen’s free energy using recently measured moduli of elasticity for hydrogen in zirconium. J. Appl. Phys. 80, 3259 (1996)Google Scholar
  4. 4.
    W. Petry, Dynamical precursors in Martensitic transitions. J. de Phys. III Suppl., Colloque C2–15, 5 (1995)Google Scholar
  5. 5.
    W. Petry et al., Phonon-dispersion of the bcc phase of group-iv metals.2. Bcc zirconium, a model case of dynamic precursors of martensitic transitions. Phys. Rev B 43, 10948 (1991)Google Scholar
  6. 6.
    J. Zhang, Y. Zhan, Formation of zirconium metallic glass. Nature 430, 332 (2004)Google Scholar
  7. 7.
    J. Zhang, Y Zhan, Formation of zirconium metallic glass. Nature 437, 1957 (2005)Google Scholar
  8. 8.
    T. Hattori, H. Saitoh, H. Kaneko, Y. Okajima, K. Aoki, W. Utsumi, Does bulk metallic glass of elemental Zr and Ti exist? Phys. Rev. Lett. 96, 255504 (2006)CrossRefGoogle Scholar
  9. 9.
    O. Kastner, J. Ackland, Mesoscale kinetics produces Martensitic microstructure. J. Mech. Phys. Solids 57, 109 (2009)CrossRefGoogle Scholar
  10. 10.
    J.R. Morris, K.M. Ho, Molecular dynamic simulation of a homogeneous bcc- > hcp transition. Phys. Rev. B 63, 224116 (2001)CrossRefGoogle Scholar
  11. 11.
    V.Yu. Trubitsin, E.B. Dolgusheva, Anharmonic effects and vibrational spectrum of bcc Zr under pressure studied by molecular dynamics simulations. Phys. Rev. B 76, 024308 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Ye, Y. Chen, K.-M. Ho, B.N. Harmon, P.-A Lindgård, Phonon-phonon coupling and the stability of the high-temperature bcc phase of Zr. Phys. Rev. Lett. 58, 1769 (1987)Google Scholar
  13. 13.
    P. Souvatzis, O. Eriksson, M.I. Katnelson, S.P. Rudin, Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-Glass nature of tweed precursors in Martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)CrossRefGoogle Scholar
  15. 15.
    P.-A Lindgård, What determines the Martensitic transition temperature in alloys? J. de Phys. III Suppl. Colloque, C2–29, 5 (1995)Google Scholar
  16. 16.
    S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50 − x Ni50 + x. Phys. Rev. Lett. 95, 205702 (2005)CrossRefGoogle Scholar
  17. 17.
    P.V. Hendriksen, S. Linderoth, P.-A. Lindgård, Phys. Rev. 48, 7259 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Materials Research DivisionRisó, DTU, National Laboratory for Sustainable EnergyRoskildeDenmark

Personalised recommendations