Skip to main content

Entropy–Driven Conformations Controlling DNA Functions

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

In memory of Jim Krumhansl we summarize our growing level of understanding of the origins and functional roles of specific nonlinear conformational excitations (“bubbles”) in DNA. We present a number of results that point toward the conclusion that DNA is capable of directing major aspects of its own lifecycle, governed by the laws of equilibrium thermodynamics.First, we discuss a series of experimental and theoretical research results that demonstrate a correlation between DNA bubbles and essential biological processes such as DNA transcription and DNA–protein binding. Specifically, we discuss how, through a synergetic combination of modeling and experiments, we have developed an extended version of the Peyrard–Bishop–Dauxois model, and used it to predict specific properties, such as bubble location, size, and duration, of DNA breathing. Applying this framework, we show a number of examples that demonstrate that specific breathing properties lead to enhancements in transcription activity and DNA–protein binding efficiency.Second, we show that DNA may be able to apply its complex conformational dynamics to facilitate its own repair. We demonstrate this in the context of specific DNA damage that has been documented to arise from exposure to UV radiation.Finally, we discuss our ongoing attempts to harness our knowledge of DNA conformation and dynamics and their impact on function to help predict transcription initiation sites in entire genomes. We apply techniques from bioinformatics and statistical learning to incorporate the above features into a more predictive framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.K. Campbell, A.C. Newell, R.J. Schrieffer, H. Segur (eds.), Solitons and coherent structures. Phys. D 18, (North-Holland, Amsterdam, 1986)

    Google Scholar 

  2. A.R. Bishop, J.A. Krumhansl, S.E. Trullinger, Solitons in condensed matter: a paradigm. Phys. D 1, 1 (1980)

    Article  Google Scholar 

  3. J.A. Krumhansl, J.R. Schrieffer, Dynamics and statistical-mechanics of a one-dimensional model Hamiltonian for structural phase-transitions. Phys. Rev. B, 11(9), 3535 (1975)

    Google Scholar 

  4. B. Horovitz, J.A. Krumhansl, Solitons in the Peierls condensate – phase solitons. Phys. Rev. B 29, 2109 (1984)

    Article  CAS  Google Scholar 

  5. G.R. Barsch, J.A. Krumhansl, Twin boundaries in ferroelastic media without interface dislocations. Phys. Rev. Lett. 53(11) 1069 (1984)

    Google Scholar 

  6. A.E. Garcia, J.A. Krumhansl, H. Frauenfelder, Variations on a theme by Debye and Waller: From simple crystals to proteins. Proteins - Struct. Funct. Bioin. 29(2) 153 (1997)

    Google Scholar 

  7. S.W. Englander, N.R. Kallenbach, A.J. Heeger, J.A. Krumhansl, S. Litwin, Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. U S A 77, 7222 (1980)

    Article  CAS  Google Scholar 

  8. A.E. Garcia, C.S. Tung, J.A. Krumhansl, Low-frequency collective motions of DNA double helices – A reduced set of coordinates approach. Biophys. J. 49(2) A123 (1986)

    Google Scholar 

  9. A.E. Garcia, J.A. Krumhansl, Density of states of single and double helical DNA. Biophys. J. 51, A420 (1987)

    Google Scholar 

  10. B. Horovitz, G.R. Barsch, J.A. Krumhansl, Twin bands in Martensites – statics and dynamics. Phys. Rev.B 43(1), 1021 (1991)

    Google Scholar 

  11. S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in Martensitic transformations. Phys. Rev. B, 52, 2, 803 (1995)

    CAS  Google Scholar 

  12. T. Lookman, S.R. Shenoy, K.Ø. Rasmussen, et al., Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 2, 024114 (2003)

    Google Scholar 

  13. M. Peyrard, A.R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755 (1989)

    Article  CAS  Google Scholar 

  14. T. Dauxois, M. Peyrard, A.R. Bishop, Entropy-driven DNA denaturation. Phys. Rev. E 47, R44 (1993)

    CAS  Google Scholar 

  15. H. Gohlke, M.F. Thorpe, A natural coarse graining for simulating large biomolecular motion. Biophys. J. 91, 2115 (2006)

    Article  CAS  Google Scholar 

  16. A. Katherine, A. Henzler-Wildman, M. Lei, V. Thai, S.J. Kerns, M. Karplus, D. Kern, A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913 (2007)

    Article  Google Scholar 

  17. S.T. Smale, J.T. Kadonaga, The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449 (2003)

    Article  CAS  Google Scholar 

  18. T. Juven-Gershon, J.T. Kadonaga, Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339, 225 (2010)

    Article  CAS  Google Scholar 

  19. J.A. Stamatoyannopoulos, Illuminating eukaryotic transcription start sites. Nat. Methods 7, 501 (2010)

    Article  CAS  Google Scholar 

  20. A. Sandelin, P. Carninci, B. Lenhard, J. Ponjavic, Y. Hayashizaki, D.A. Hume, Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424 (2007)

    Article  CAS  Google Scholar 

  21. A.F. Melnikova, R. Beabealashvilli, A.D. Mirzabekov, A study of unwinding of DNA and shielding of the DNA grooves by RNA polymerase by using methylation with dimethylsulphate. Eur. J. Biochem. 84, 301 (1978)

    Article  CAS  Google Scholar 

  22. U. Siebenlist, RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature 279 651–652 (1979)

    Article  CAS  Google Scholar 

  23. M. Guéron, M. Kochoyan, J.L. Leroy, A single mode of DNA base-pair opening drives imino proton exchange. Nature, 328, 89 (1987)

    Article  Google Scholar 

  24. D.M.J. Lilley, DNA opens up – supercoiling and heavy breathing. Trends Genet. 4(4), 111 (1988)

    Google Scholar 

  25. A. Kornberg, T.A. Baker, DNA Replication, 2nd edn. (University Science Books, Sausalito, CA, 2005)

    Google Scholar 

  26. Y. Lin, S.Y. Dent, J.H. Wilson, R.D. Wells, M. Napierala, R-loops stimulate genetic instability of CTG.CAG repeats. Proc. Natl Acad. Sci. U. S. A. 107, 692 (2010)

    Google Scholar 

  27. C.H. Choi, G. Kalosakas, K.Ø. Rasmussen, M. Hiromura, A.R. Bishop, A. Usheva, DNA dynamically directs its own transcription initiation. Nucl. Acids. Res. 32, 1584 (2004)

    Article  CAS  Google Scholar 

  28. G. Kalosakas, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Sequence-specific thermal fluctuations identify start sites for DNA transcription. Europhys. Lett. 68, 127 (2004)

    Article  CAS  Google Scholar 

  29. W.C. Kerr, A.M. Hawthorne, R.J. Gooding, A.R. Bishop, J.A. Krumhansl, First-order displacive structural phase transitions studied by computer simulation. Phys. Rev. B 45, (1992)

    Google Scholar 

  30. B.S. Alexandrov, L.T. Wille, K.Ø. Rasmussen, A.R. Bishop, K.B. Blagoev, Bubble statistics and dynamics in double-stranded DNA. Phys. Rev. E 74, 050901 R (2006)

    Google Scholar 

  31. Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Healing length and bubble formation in DNA. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 051902 (2006)

    Article  CAS  Google Scholar 

  32. Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Lengthscales and cooperativity in DNA bubble formation. Europhys. Lett. 74, 540 (2006)

    Article  CAS  Google Scholar 

  33. C.H. Chu, Z. Rapti, V. Gelev, M.R. Hacker, B.S. Alexandrov, E.J. Park, J.S. Park, N. Horikoshi, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, A. Usheva, Profiling the thermodynamic softness of adenoviral promoters. Biophys. J. 95, 597 (2008)

    Article  Google Scholar 

  34. B.S. Alexandrov, V. Gelev, S.W. Yoo, A.R. Bishop, K.Ø. Rasmussen, et al., Toward a detailed description of the thermally induced dynamics of the core promoter. PLoS Comput. Biol. 5(3), e1000313 (2009)

    Google Scholar 

  35. J. Sponer, K.E. Riley, P. Hobza, Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 10, 2595 (2008)

    Article  CAS  Google Scholar 

  36. B.S. Alexandrov, V. Gelev, Y. Monisova, L.B. Alexandrov, A.R. Bishop, K.Ø. Rasmussen, A. Usheva, A nonlinear dynamic model of DNA with a sequence-dependent stacking term. Nucl. Acids. Res. 37, 2405 (2009)

    Article  CAS  Google Scholar 

  37. R.D. Wells, J.E. Larson, R.C. Grant, B.E. Shortle, C.R. Cantor, Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences. J. Mol. Biol. 54, 465 (1970)

    Article  CAS  Google Scholar 

  38. J.C. Venter, et al., The human genome. Science 291, 1304 (2001)

    CAS  Google Scholar 

  39. S. Ares, N.K. Voulgarakis, K.Ø. Rasmussen, A.R. Bishop, Bubble nucleation and cooperativity in DNA melting. Phys. Rev. Lett. 94, 035504 (2005)

    Article  CAS  Google Scholar 

  40. T. Juven-Gershon, S. Cheng, J.T. Kadonaga, Rational design of a super core promoter that enhances gene expression. Nat. Methods 3, 917 (2006)

    Article  CAS  Google Scholar 

  41. B.S. Alexandrov, V. Gelev, S.W. Yoo, L.B. Alexandrov, Y. Fukuyo, A.R. Bishop, K.Ø. Rasmussen, A. Usheva, DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation. Nucl. Acids. Res. 38(6), 1790 (2010)

    CAS  Google Scholar 

  42. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M.P. Scott, S.L. Zipursky, J. Darnell, Molecular Biology of the Cell, 5th edn. (WH Freeman, New York, NY, 2004) p. 963

    Google Scholar 

  43. J. Montgomery, C.T. Wittwer, R. Palais, L. Zhou, Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat. Protoc. 2, 59 (2007)

    Article  CAS  Google Scholar 

  44. J. Kemmink, R. Boelens, T. Koning, et al., 1H NMR study of the exchangeable protons of the duplex d (GCGTTGCG). d (CGCAACGC) containing a thymine photodimer containing a thymine photodimer. Nucl. Acids Res. 15, 4645 (1987)

    Google Scholar 

  45. J. Ramstein, C. Hélène, M. Leng, A study of chemically methylated deoxyribonucleic acid. Eur. J. Biochem. 21(1), 125 (1971)

    CAS  Google Scholar 

  46. K.B. Blagoev, B.S. Alexandrov, E.H. Goodwin, A.R. Bishop, Ultra-violet light induced changes in DNA dynamics may enhance TT-dimer recognition. DNA Repair 7, 863 (2006)

    Article  Google Scholar 

  47. B.S. Alexandrov, N.K. Voulgarakis, K.Ø. Rasmussen, A. Usheva, A.R. Bishop, Pre-melting dynamics of DNA and its relation to specific functions. J. Phys.: Condens. Matter 21, 034107 (2009)

    Google Scholar 

  48. M. Fixman, Classical statistical mechanics of constraints: a theorem and application to polymers. Proc. Natl. Acad. Sci. U. S. A. 71, 3050 (1974)

    Article  CAS  Google Scholar 

  49. T. Abeel, Y. Van de Peer, Y. Saeys, Toward a gold standard for promoter prediction evaluation. Bioinformatics 25, i313 (2009)

    Article  CAS  Google Scholar 

  50. M. Megraw, F. Pereira, T.J. Jensen, et al., A transcription factor affinity-based code for mammalian transcription initiation. Genome Res. 19, 644 (2009)

    Article  CAS  Google Scholar 

  51. C.F. Frith, E. Valen, A. Krogh, et al., A code for transcription initiation in mammalian genomes. Genome Res. 18, 1 (2008)

    Article  CAS  Google Scholar 

  52. G. Badis, M.F. Berger, A.A. Philippaki, et al., Diversity and complexity in DNA recognition by transcription factors. Science 26, 5935 (2009)

    Google Scholar 

  53. F. Liu, E. Tostesen, J.K. Sundet, T.K. Jenssen, C. Bock, et al., The human genomic melting map. PLoS Comput. Biol. 3, e93 (2007)

    Article  Google Scholar 

  54. D.G. Dineen, A. Wilm, P. Cunningham, D.G. Higgins, High DNA melting temperature predicts transcription start site location in human and mouse. Nucl. Acids Res 37, 7360 (2009)

    Article  CAS  Google Scholar 

  55. C.J. Benham, Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425 (1996)

    Article  CAS  Google Scholar 

  56. T.A. Down, T.J. Hubbard, Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res. 12, 458 (2002)

    Article  CAS  Google Scholar 

  57. T. Abeel, Y. Saeys, E. Bonnet, P. Rouze, Y. Van de Peer, Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18, 310 (2008)

    Article  CAS  Google Scholar 

  58. S. Sonnenburg, A. Zien, G. Ratsch, ARTS: accurate recognition of transcription starts in human. Bioinformatics 22, e472 (2006)

    Article  CAS  Google Scholar 

  59. T. Abeel, Y. Saeys, P. Rouze, Y. Van de Peer, ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles. Bioinformatics 24, 24 (2008)

    Article  Google Scholar 

  60. L.B. Alexandrov, K.Ø. Rasmussen, A.R. Bishop, A. Usheva, B.S. Alexandrov, DNA breathing dynamics for genomic-scale core promoter prediction. Submitted

    Google Scholar 

  61. A. Usheva, T. Shenk, YY1 transcriptional initiator: protein interactions and association with a DNA site containing unpaired strands. Proc. Natl. Acad. Sci. U. S. A. 93, 13571 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all our collaborators with whom we have coauthored the original works summarized here. This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52–06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bishop, A.R., Rasmussen, K.Ø., Usheva, A., Alexandrov, B.S. (2012). Entropy–Driven Conformations Controlling DNA Functions. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics