Advertisement

Metastability, Hysteresis, Avalanches, and Acoustic Emission: Martensitic Transitions in Functional Materials

  • Martin-Luc Rosinberg
  • Eduard Vives
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)

Abstract

We review several aspects of the dynamics of first-order phase transitions in functional materials. In particular, we focus on recent models of the athermal evolution in driven ferromagnets that provide a global picture of metastability and hysteresis, and show that first-order phase transitions in these systems proceed by avalanches. Within this theoretical framework, we discuss recent experiments on acoustic emission avalanches in structural phase transitions.

Keywords

Hysteresis Loop Acoustic Emission Metastable State Acoustic Emission Signal Acoustic Emission Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge fruitful discussions with Ll.Mañosa, A.Planes, F.J. Pérez-Reche, and G. Tarjus. E.V. acknowledges the hospitality of the Physics Department (University of Warwick) during a sabbatical stay supported by the Spanish Ministry of Education (PR2009-0016). We also acknowledge financial support from the Spanish Ministry of Science and Innovation (MAT2010-15114).

References

  1. 1.
    J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347 (1993)CrossRefGoogle Scholar
  2. 2.
    J.P. Sethna, K. Dahmen, O. Perkovic, in The Science of Hysteresis, eds. by G. Berttoti, I. Mayergoyz (Academic, Amsterdam, 2006)Google Scholar
  3. 3.
    E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, G. Tarjus, Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior. Phys. Rev. Lett. 87, 055701 (2001)CrossRefGoogle Scholar
  4. 4.
    F. Detcheverry, E. Kierlik, M.L. Rosinberg, G. Tarjus, Helium condensation in aerogel: avalanches and disorder-induced phase transition. Phys. Rev. E 72, 051506 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Bonnet, T. Lambert, B. Cross, L. Guyon, F. Despetis, L. Puech, P.E. Wolf, Evidence for a disorder-driven phase transition in the condensation of 4He in aerogels. Eur. Phys. Lett. 82, 56003 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Vives, M.L. Rosinberg, G. Tarjus, Hysteresis and avalanches in the T = 0 random-field Ising model with two-spin-flip dynamics. Phys. Rev. B 71, 134424 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Bortolotti, V. Basso, A. Magni, G. Bertotti, Oriented graph structure of local energy minima in the random-field Ising model. Physica B 403, 398 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Detcheverry, M.L. Rosinberg, G. Tarjus, Metastable states and T = 0 hysteresis in the random-field Ising model on random graphs. Eur. Phys. J. B 44, 327 (2005)CrossRefGoogle Scholar
  9. 9.
    F.J. Pérez-Reche, M.L. Rosinberg, G. Tarjus, Numerical approach to metastable states in the zero-temperature random-field Ising model. Phys. Rev. B 77, 064422 (2008)CrossRefGoogle Scholar
  10. 10.
    V. Basso, A. Magni, Field history analysis of spin configurations in the random-field Ising model. Physica B 343, 275 (2004)CrossRefGoogle Scholar
  11. 11.
    M.L. Rosinberg, G. Tarjus, F.J. Pérez-Reche, The T = 0 random-field Ising model on a Bethe lattice with large coordination number: hysteresis and metastable states. J. Stat. Mech: Theory Exp. 03003 (2009)Google Scholar
  12. 12.
    F. Pazmandi, G. Zarand, G.T. Zimanyi, Self-organized, criticality in the hysteresis of the Sherrington-Kirkpatrick model. Phys. Rev. Lett. 83, 1034 (1999)CrossRefGoogle Scholar
  13. 13.
    M.L. Rosinberg, T. Munakata, Hysteresis and metastability in the mean-field random field Ising model: the soft-spin version. Phys. Rev. B 79, 174207 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Bouchet, T. Dauxois, D. Mukamel, S. Ruffo, Phase space gaps and ergodicity breaking in systems with long-range interactions. Phys. Rev. E 77, 011125 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, K.A. Dahmen, Unexpected universality in static and dynamic avalanches. Phys. Rev. E 79, 061124 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Bertotti, Hysteresis in Magnetism (Academic, New York, 1998)Google Scholar
  17. 17.
    E. Kierlik, J. Puibasset, G. Tarjus, Effect of the reservoir size on gas adsorption in inhomogneous porous media. J. Phys.: Condens. Mat. 21, 155102 (2009)Google Scholar
  18. 18.
    E. Bonnot, R. Romero, X. Illa, L. Manosa, A. Planes, E. Vives, Hysteresis in a system driven by either generalized force or displacement variables: martensitic phase transition in single-crystalline Cu-Zn-Al. Phys. Rev. B 76, 064105 (2007)CrossRefGoogle Scholar
  19. 19.
    X. Illa, M.L. Rosinberg, P. Shukla, E. Vives, Magnetization driven random-field Ising model at T = 0. Phys. Rev. B 74, 244404 (2006)Google Scholar
  20. 20.
    S. Zapperi, P. Cizeau, G. Durin, E. Stanley, Dynamics of a ferromagnetic domain-wall: avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353 (1998)CrossRefGoogle Scholar
  21. 21.
    F. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Driving-induced crossover: from classical criticality to self-organized criticality. Phys. Rev. Lett. 101, 230601 (2008)CrossRefGoogle Scholar
  22. 22.
    X. Illa, M.L. Rosinberg, P. Shukla, E. Vives, Influence of the driving mechanism on the response of systems with athermal dynamics: the example of the random-field Ising model. Phys. Rev. B 74, 244403 (2006)Google Scholar
  23. 23.
    S. Papanikolaou, F. Bohn, R.L. Sommer, G. Durin, S. Zapperi, J.P. Sethna, Beyond scaling: the average avalanche shape, Nature Phys. 7, 316 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Alessandro, C. Beatrice, G. Bertotti, A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials: I. Theory. J. Appl. Phys. 68, 2901 (1990)Google Scholar
  25. 25.
    C.B. Scruby, An introduction to acoustic emission. J. Phys. E: Sci. Instrum. 20, 946 (1987)CrossRefGoogle Scholar
  26. 26.
    Ll. Mañosa, A. Planes, D. Rouby, M. Morin, P. Fleischmann, J.L. Macqueron, Acoustic emission field during thermoelastic martensitic transformations. Appl. Phys. Lett. 54, 2574 (1989)Google Scholar
  27. 27.
    O.U. Salman, Modeling of spatio-temporal dynamics and patterning mechanisms of martensites by phase-field and Lagrangian methods, PhD dissertation, Université Pierre et Marie Curie (2009)Google Scholar
  28. 28.
    C.B. Scruby, Quantitative acoustic emission techniques ed. by R.S. Sharpe in Research Techniques in Non-destructive Testing, vol III (Academic Press, London, 1985)Google Scholar
  29. 29.
    E. Bonnot, Ll. Mañosa, A. Planes, D. Soto-Parra, E. Vives, B. Ludwig, C. Strothkaemper, T. Fukuda, T. Kakeshita, Acoustic emission in the fcc-fct martensitic transition of Fe68. 8Pd31. 2. Phys. Rev. B 78, 184103 (2008)Google Scholar
  30. 30.
    F.J. Pérez-Reche, E. Vives, Ll. Mañosa, A. Planes, Athermal character of structural phase transitions. Phys. Rev. Lett. 87, 195701 (2001)Google Scholar
  31. 31.
    F.J. Pérez-Reche, B. Tadi, Ll. Mañosa, A. Planes, E. Vives, Driving rate effects in avalanche-mediated first-order phase transitions. Phys. Rev. Lett. 93, 195701 (2004)Google Scholar
  32. 32.
    F.J. Pérez-Reche, M. Stipcich, E. Vives, Ll. Mañosa, A. Planes, M. Morin, Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales. Phys. Rev. B 69, 064101 (2004)Google Scholar
  33. 33.
    L. Straka, V. Novák, M. Landa, O. Heczko, Acoustic emission of Ni-Mn-Ga magnetic shape memory alloy in different straining modes. Mater Sci Eng A 374, 263 (2004)CrossRefGoogle Scholar
  34. 34.
    E. Vives, D. Soto-Parra, Ll. Mañosa, R. Romero, A. Planes, Driving-induced crossover in the avalanche criticality of martensitic transitions. Phys. Rev. B 80, 180101 (2009)Google Scholar
  35. 35.
    E. Bonnot, E. Vives, Ll. Mañosa, A. Planes, R. Romero, Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition. Phys. Rev. B 78, 094104 (2008)Google Scholar
  36. 36.
    M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, Avalanche criticality in the martensitic transition of Cu67.64 Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81, 174102 (2010)Google Scholar
  37. 37.
    E. Vives, I. Ràfols, L. Mañosa, J. Ortín, A. Planes, Statistics of avalanches in martensitic transformations. I. Acoustic emission experiments. Phys. Rev. B 52, 12644 (1995)Google Scholar
  38. 38.
    I. Ràfols, E. Vives, Statistics of avalanches in martensitic transformations. II. Modeling. Phys. Rev. B 52, 12651 (1995)CrossRefGoogle Scholar
  39. 39.
    Ll. Carrillo, Ll. Mañosa, J. Ortín, A. Planes, E. Vives, Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions. Phys. Rev. Lett. 81, 1889 (1998)Google Scholar
  40. 40.
    B. Ludwig, C. Strothkaemper, U. Klemradt, X. Moya, Ll. Mañosa, E. Vives, A. Planes, Premartensitic transition in Ni2MnGa Heusler alloys: Acoustic emission study. Phys. Rev. B 80, 144102 (2009)Google Scholar
  41. 41.
    B. Ludwig, C. Strothkaemper, U. Klemradt, X. Moya, Ll. Mañosa, E. Vives, A. Planes, An acoustic emission study of the effect of a magnetic field on the martensitic transition in Ni2MnGa. Appl. Phys. Lett. 94, 121901 (2009)Google Scholar
  42. 42.
    F.J. Perez-Reche, L. Truskinovsky, G. Zanzotto, Training-induced criticality in martensites. Phys. Rev. Lett. 99, 075501 (2007)CrossRefGoogle Scholar
  43. 43.
    B. Cerruti, E. Vives, Correlations in avalanche critical points. Phys. Rev. E 80, 011105 (2009)CrossRefGoogle Scholar
  44. 44.
    B. Cerruti, E. Vives, Random-field Potts model with dipolar-like interactions: hysteresis, avalanches, and microstructure. Phys. Rev. B 77, 064114 (2008)CrossRefGoogle Scholar
  45. 45.
    B. Cerruti, E. Vives, Statistics of microstructure formation in structural transitions studied using a random-field Potts model with dipolar-like interactions. J. Stat. Mech. P05009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de la Matière CondenséeUniversité Pierre et Marie CurieParisFrance
  2. 2.Facultat de Física, Departament d’Estructura i Constituents de la MateriaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  4. 4.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations