Precursor Nanoscale Textures in Ferroelastic Martensites

  • Pol Lloveras
  • Teresa CastánEmail author
  • Antoni Planes
  • Avadh Saxena
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)


This chapter deals with nanoscale spatially inhomogeneous states that occur as precursors of martensitic/ferroelastic transitions in many off-stoichiometric shape-memory alloys. We show that these states are a result of the competition between elastic anisotropy and disorder arising, for instance, from compositional fluctuations. In the limit of high disorder and/or low elastic anisotropy, we show that nanoscale inhomogeneities give rise to glassy behaviour, while the structural transition is inhibited.


Parent Phase Elastic Anisotropy Martensitic Transition Glassy Behaviour Ferroelastic Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for fruitful, insightful and stimulating discussions with a number of researchers including Professors T. Kakeshita, K. Otsuka, X. Ren and T. Fukuda. We are also indebted to Prof. Y. Murakami and Prof. X. Ren for providing some of the pictures shown in this chapter. This work was supported by CICyT (Spain) Project No. MAT2007–61200 and the U.S. Department of Energy.


  1. 1.
    E. Dagotto, Complexity in strongly correlated electronic systems. Science 309, 257 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Lookman, P. Littlewood, Nanoscale heterogeneity in functional materials. MRS Bull. 34, 822 (2010)CrossRefGoogle Scholar
  3. 3.
    N. Mathur, P. Littlewood, The third way. Nat. Mater. 3, 207 (2004)CrossRefGoogle Scholar
  4. 4.
    The name tweedwas first coined by W.K. Armitage in his PhD. Thesis, University of Leeds, UK (1963)Google Scholar
  5. 5.
    L.E. Tanner, Diffraction contrast from elastic shear strains due to coherent phases. Philos. Mag. 14, 111 (1966)CrossRefGoogle Scholar
  6. 6.
    K. Enami, J. Hasunuma, A. Nagasawa, S. Nenno, Elastic softening and electron-diffraction anomalies prior to the martensitic transformation in a Ni-Al β1alloy. Scr. Metall. 10, 879 (1976)CrossRefGoogle Scholar
  7. 7.
    K. Enami, A. Nagasawa, S. Nenno, On the premartensitic transformation in the Ni-Al β1alloy. Scr. Metall. 12, 223 (1978)CrossRefGoogle Scholar
  8. 8.
    I.M. Robertson, C.M. Wayman, Tweed microstructures I. Characterization in ß-NiAl. Philos. Mag. A 48, 421 (1983)Google Scholar
  9. 9.
    I.M. Robertson, C.M. Wayman, Tweed microstructures II. In several phases of the Ni-Al system. Philos. Mag. A 48, 443 (1983)Google Scholar
  10. 10.
    I.M. Robertson, C.M. Wayman, Tweed microstructures III. Origin of tweed contrast in β and γ Ni-Al Alloys. Philos. Mag. A 48, 629 (1983)Google Scholar
  11. 11.
    Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Magnetic domain structures in Co–Ni–Al shape memory alloys studied by Lorentz microscopy and electron holography. Acta Metall. 50, 2173 (2002)Google Scholar
  12. 12.
    M. Porta, T. Castan, A. Planes, A. Saxena, Precursor nanoscale modulations in ferromagnets: Modelling and thermodynamic characterization. Phys. Rev. B 72, 054111 (2005)CrossRefGoogle Scholar
  13. 13.
    X. Meng, K.Z. Baba-Kishi, G.K.H. Pang, H.L. Chan, C.L. Choy, Tweed domains in ferroelectrics with compositions at the morphotropic phase boundary. Philos. Mag. Lett. 84, 191 (2004)CrossRefGoogle Scholar
  14. 14.
    O. Tikhomirov, H. Jiang, J. Levy, Local ferroelectricity in SrTiO3thin films. Phys. Rev. Lett. 89, 147601 (2002)CrossRefGoogle Scholar
  15. 15.
    Z. Xu, Myung-Chul Kim, Jie-Fang Li, Dwight Viehland, Observation of a sequence of domain-like states with increasing disorder in ferroelectrics. Philos. Mag. A 74, 395 (1996)Google Scholar
  16. 16.
    Y. Kishi, M. De Graef, C. Craciunescu, T.A. Lograsso, D.A. Neumann, M. Wuttig, Microstructures and transformation behavior of CoNiGa ferromagnetic shape memory alloys. J. Phys. IV (France) 112, 1021 (2003)Google Scholar
  17. 17.
    M. De Graef, Y. Kishi, Y. Zhu, M. Wuttig, Lorentz study of magnetic domains in Heusler-type ferromagnetic shape memory alloys. J. Phys. IV (France) 112, 993 (2003)Google Scholar
  18. 18.
    H.S. Park, Y. Murakami, D. Shindo, V.A. Chernenko, T. Kanomata, Behavior of magnetic domains during structural transformations in Ni2MnGa ferromagnetic shape memory alloy. Appl. Phys. Lett. 83, 3752 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Saxena, T. Castán, A. Planes, M. Porta, Y. Kishi, T.A. Lograsso, D. Viehland, M. Wuttig, M. De Graef, Origin of magnetic and magnetoelastic tweed-like precursor modulations in ferroic materials. Phys. Rev. Lett. 92, 197203 (2004)CrossRefGoogle Scholar
  20. 20.
    T. Castán, E. Vives, L. Mañosa, A. Planes, A. Saxena, Disorder in Magnetic and Structural Transitions: Pretransitional Phenomena and Kinetics, in ed by A. Planes, Ll. Mañosa, A. Saxena. Magnetism and Structure in Functional Materials,Springer Series in Materials Science, vol 79. (Springer, Berlin 2005)Google Scholar
  21. 21.
    N. Mathur, P. Littlewood, Mesoscopic texture in manganites. Phys. Today 56, 25 (2003)Google Scholar
  22. 22.
    K. Bhattacharya, Microstructure of Martensite(Oxford University Press., New York, 2003)Google Scholar
  23. 23.
    A.G. Khachaturyan, The Theory of Structural Transformations in Solids(Wiley, New York, 1983)Google Scholar
  24. 24.
    K. Otsuka, X. Ren, Physical metallurgy on Ti-Ni-based shape memory alloys. Prog. Mat. Sci. 50, 511 (2005)CrossRefGoogle Scholar
  25. 25.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals(Cambridge University Press., Cambridge, 1990)Google Scholar
  26. 26.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, A.F.K. Oikawa, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature Lett. 439, 957 (2006)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Temperature-stress phase diagram of strain glass Ti48. 5Ni51. 5. Acta Mater. 56, 2885 (2008)Google Scholar
  28. 28.
    J. Cui, Y. Chu, O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Mat. 5, 286 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Delville, S. Kasinathan, Z. Zhang, J.Van Humbeeck, R.D. James, D. Schryvers, Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90, 177 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Murakami, H. Shibuya, D. Shindo, Precursor effects of martensitic transformations in Ti-based alloys studied by electron microscopy with energy filtering. J. Microscopy 203, 22 (2001)CrossRefGoogle Scholar
  31. 31.
    S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic martensitic system \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\). Phys. Rev. Lett. 95, 205702 (2005)CrossRefGoogle Scholar
  32. 32.
    M.-S. Choi, T. Fukuda, T. Kakeshita, H. Mori, Incommensurate- commensurate transition and nanoscale domain-like structure in iron doped Ti-Ni shape memory alloys. Philos. Mag. 86, 67 (2006)CrossRefGoogle Scholar
  33. 33.
    X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Strain Glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philos. Mag. 90, 141 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Ferroelastic nanostructures and nanoscale transitions: Ferroics with point defects. MRS Bull. 34, 838 (2009)CrossRefGoogle Scholar
  35. 35.
    P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in ZFC/FC simulation experiments. Phys. Rev. B 80, 054107 (2009)CrossRefGoogle Scholar
  36. 36.
    P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Thermodynamics of stress-induced ferroelastic transitions: Influence of anisotropy and disorder. Phys. Rev. B 81, 214105 (2010)CrossRefGoogle Scholar
  37. 37.
    P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Influence of elastic anisotropy on nanoscale textures. Phys. Rev. Lett. 100, 165707 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Zener, Theory of strain interaction of solute atoms. Phys. Rev. 74, 639 (1948)CrossRefGoogle Scholar
  39. 39.
    J. Friedel, On the stability of the body centred cubic phase in metals at high temperatures. J. Physique Lett. 35, L59 (1974)CrossRefGoogle Scholar
  40. 40.
    A. Planes, Ll. Mañosa, Vibrational properties of shape-memory alloys. Solid State Phys. 55, 159 (2001)Google Scholar
  41. 41.
    B.E. Warren, X-Ray Diffraction(Dover Publications, NewYork, 1990) p. 174Google Scholar
  42. 42.
    L.E. Tanner, A.R. Pelton, R. Gronsky, The characterization of pretransformation morphologies: periodic strain modulations. J. Physique Colloque C4 43, 169 (1982)Google Scholar
  43. 43.
    D. Schryvers, L.E. Tanner, G. Van Tendeloo, Premartensitic Microstructures as seen in the High Resolution Electron Microscope: A Study of a Ni-Al Alloy, NATO ASSI on Phase Stability,Crete (1987)Google Scholar
  44. 44.
    S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52, 803 (1995)CrossRefGoogle Scholar
  45. 45.
    S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Neutron-scattering study of premartensitic behaviour in Ni-Al alloys. Phys. Rev. Lett. 57, 3199 (1986)CrossRefGoogle Scholar
  46. 46.
    S. Muto, S. Takeda, R. Oshima, Analysis of lattice modulations in the tweed structures of an Fe-Pd alloy by image processing of a high-resolution electron micrograph. Jap. J. Appl. Phys. 29, 2066 (1990)CrossRefGoogle Scholar
  47. 47.
    S. Muto, R. Oshima, F.E. Fujita, Elastic softening and elastic strain energy consideration in the FCC-FCT transformation of Fe-Pd alloys. Acta Metal. Mater. 38, 685 (1990)CrossRefGoogle Scholar
  48. 48.
    D. Schryvers, D.E. Lahjouji, B. Slootmarkers, P.L. Potapov, HREM investigations of martensite precursor effects and stacking sequences in Ni-Mn-Ti alloys. Scr. Mater. 35, 1235 (1996)CrossRefGoogle Scholar
  49. 49.
    G. Van Tendeloo, M. Chandrasekaran, F.C. Lovey, Modulated microstructures in β Cu-Zn-Al. Metall. Trans. A 17, 2153 (1986)CrossRefGoogle Scholar
  50. 50.
    A. Planes, Ll. Mañosa, E. Vives, Vibrational behavior of bcc Cu-based shape-memory alloys close to the martensitic transition. Phys. Rev. B 53, 3039 (1996)Google Scholar
  51. 51.
    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y. Chumlyakoz, M. Asai, A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation. Mat. Sci. Eng. A 312, 196 (2001).CrossRefGoogle Scholar
  52. 52.
    J. Worgull, E. Petit, J. Trevisono, Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys. Rev. B 54, 15695 (1996)CrossRefGoogle Scholar
  53. 53.
    E. Cesari, V.A. Chernenko, V.V. Kokorin, J. Pons, C. Seguí, Internal friction associated with the structural phase transformations in Ni-Mn-Ga alloys. Acta Mater. 45, 999 (1997)CrossRefGoogle Scholar
  54. 54.
    S.M. Shapiro, G. Xu, B.L. Winn, D.L. Schlagel, T. Lograsso, R. Erwin, Anomalous phonon behaviour in the high-temperature shape-memory alloy Ti50Pd50 − xCrx. Phys. Rev. B 76, 054305 (2007)CrossRefGoogle Scholar
  55. 55.
    S.M. Shapiro, G. Xu, B.L. Winn, D.L. Schlagel, T. Lograsso, R. Erwin, Phonon precursors to the high temperature martensitic transformation in Ti50Pd48Cr2. J. Phys. IV France 112, 1047 (2003)CrossRefGoogle Scholar
  56. 56.
    A.J. Schwartz, L.E. Tanner, Phase transformations and phase relations in the TiPd-Cr pseudobinary system I. Experimental observations. Scr. Metall. Mater. 32, 675 (1995)CrossRefGoogle Scholar
  57. 57.
    D. Shindo, Y. Murakami, Advanced transmission electron microscopy study on premartensitic state of Ti50Ni48Fe2. Sci. Technol. Adv. Mater. 1, 117 (2000)CrossRefGoogle Scholar
  58. 58.
    Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka, X. Ren, Phase diagram of \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\): Crossover from martensite to strain glass. Phys. Rev. B 81, 224102 (2010)CrossRefGoogle Scholar
  59. 59.
    S. Nagata, P. Keesom, H.R. Harrison, Low-dc-field susceptibility of CuMn spin glass. Phys. Rev. B 19, 1633 (1979)CrossRefGoogle Scholar
  60. 60.
    D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Glassy polarization behaviour of relaxor ferroelectrics. Phys. Rev. B 46, 8013 (1992)CrossRefGoogle Scholar
  61. 61.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007)CrossRefGoogle Scholar
  62. 62.
    T. Lookman, S.R. Shenoy, K.Ø. Rasmussen, A. Saxena, A.R. Bishop, Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 02411 (2003)CrossRefGoogle Scholar
  63. 63.
    See for instance, F. Falk, Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall. 28, 1773 (1980)Google Scholar
  64. 64.
    M.-S. Choi, T. Fukuda, T. Kakeshita, Anomalies in resistivity, magnetic susceptibility and specific heat in iron-doped Ti-Ni shape memory alloys, Scr. Mater. 53, 869 (2005)CrossRefGoogle Scholar
  65. 65.
    Y. Zhou, D. Xue, X. Ding, K. Otsuka, J. Sun, X. Ren, High temperature strain glass in Ti50(Pd50 − xCrx) alloy and the associated shape memory effect and superelasticity. Appl. Phys. Lett. 95, 151906 (2009)CrossRefGoogle Scholar
  66. 66.
    Y. Xu, M. Suenaga, J. Tafto, R.L. Saba, A.R. Moodenbaugh, P. Zolliker, Microstructure, lattice parameters and superconductivity of \({\mathrm{YBa}}_{2}({\mathrm{Cu}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}){\mathrm{O}}_{7-\delta }\)for 0 < x < 0. 33. Phys. Rev. B 39, 6667 (1989)Google Scholar
  67. 67.
    W.W. Schmahl, A. Putnis, E.K.H. Salje, P. Freeman, A. Graeme-Barber, R. Jones, K.K. Singh, J. Blunt, P.P. Edwards, J. Loran, K. Mirza, Twin formation and structural modulations in orthorhombic and tetragonal \({\mathrm{YBa}}_{2}{({\mathrm{Cu}}_{1-\mathrm{x}}{\mathrm{Co}}_{\mathrm{x}})}_{3}{\mathrm{O}}_{7-\delta }\). Philos. Mag. Lett. 60, 214 (1989)CrossRefGoogle Scholar
  68. 68.
    R. Oshima, M. Sugiyama, F. Fujita, Tweed structures associated with Fcc-Fct transformations in Fe-Pd alloys. Metall. Trans. A 19, 803 (1988)Google Scholar
  69. 69.
    Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006)CrossRefGoogle Scholar
  70. 70.
    N. Nakanishi, T. Mori, S. Miura, Y. Murakami, S. Kachi, Pseudoelasticity in Au-Cd thermoelastic martensite. Philos. Mag. 28, 277 (1973)CrossRefGoogle Scholar
  71. 71.
    V.A. Chernenko, V. L’vov, J. Pons, E. Cesari, Superelasticity in high temperature Ni-Mn-Ga alloys. J. Appl. Phys. 93, 2394 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pol Lloveras
    • 1
    • 2
  • Teresa Castán
    • 1
    • 2
    Email author
  • Antoni Planes
    • 1
    • 2
  • Avadh Saxena
    • 3
    • 4
  1. 1.Facultat de Física, Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations