Strain Glass and Strain Glass Transition

  • Xiaobing RenEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)


Strain glass is a frozen disordered ferroelastic state with short-range strain order only. It is a conjugate state to the long-range ordered ferroelastic state or martensite. In this chapter, recent progress in strain glass and strain glass transition is reviewed. It is shown that a strain glass bears all the features of a glass, being parallel to other types of glasses such as relaxor ferroelectrics and cluster-spin glasses. Novel properties of strain glass are demonstrated. The origin of strain glass is discussed in terms of its relation to point defects. Finally, it is shown that the insight gained from strain glass may be able to solve a number of long-standing puzzles in ferroelastic community.


Glass Transition Point Defect Martensitic Transformation Defect Pair Martensitic Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks T. Lookman, A. Saxena, D. Sherrington, Y. Wang, D. Wang, Z. Zhang, Y.M. Zhou, J. Zhang, Y.Z. Wang, T. Suzuki, and K. Otsuka for discussions. He also acknowledges the financial support from Kakenhi of JSPS.


  1. 1.
    G. Careri, Order and Disorder in Matter (AddisonWesley, Massachusetts 1984)Google Scholar
  2. 2.
    X Ren, Y. Wang et al., Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass Philos. Mag 90, 141 (2010)Google Scholar
  3. 3.
    V.K. Wadhawan, Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000)Google Scholar
  4. 4.
    K. Binder, W. Kob, Glassy Materials and Disordered Solids (World Scientific, London, 2005)Google Scholar
  5. 5.
    R.N. Bhowmik, R. Ranganathan, Anomaly in cluster glass behaviour of Co0. 2Zn0. 8Fe2O4 spinel oxide. J. Magn. Magn. Mater. 248, 101 (2002)Google Scholar
  6. 6.
    R.T. Zhang, J.F. Li, D. Vieland, Effect of aliovalent substituents on the ferroelectric properties of modified barium titanate ceramics – Relaxor Ferroelectric Behavior. J. Am. Ceram. Soc. 87, 864 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)CrossRefGoogle Scholar
  8. 8.
    S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52, 803 (1995)CrossRefGoogle Scholar
  9. 9.
    S. Semenovskaya, A.G. Khachaturyan, Coherent structural transformations in random crystalline systems. Acta Mater. 45, 4367 (1997)CrossRefGoogle Scholar
  10. 10.
    A. Planes, L. Manosa, Vibrational properties of shape-memory alloys. Solid State Phys. 55, 159 (2001)CrossRefGoogle Scholar
  11. 11.
    K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\). Phys. Rev. Lett. 95, 205702 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys. Rev. B. 76, 132201 (2007)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena Temperature-stress phase diagram of strain glass Ti48. 5Ni51. 5 Acta Mater. 56, 2885 (2008)Google Scholar
  16. 16.
    Y. Wang, X. Ren, K. Otsuka Strain glass: glassy Martensite, Mater. Sci. Forum. 583, 67 (2008)Google Scholar
  17. 17.
    Y. Wang et al., Evolution of the relaxation spectrum during the strain glass transition of Ti48. 5Ni51. 5 alloy. Acta Mater. 58, 4723 (2010)Google Scholar
  18. 18.
    Z. Zhang et al., Phase diagram of \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\): Crossover from martensite to strain glass. Phys. Rev. B 81, 22402 (2010)Google Scholar
  19. 19.
    D. Wang et al., Strain glass in Fe-doped Ti-Ni Acta Mater 58 6206 (2010)Google Scholar
  20. 20.
    Y.M. Zhou et al., Strain glass in doped Ti50(Ni50 − xDx) (D = Co, Cr, Mn) alloys – Implication for the generality of strain glass in defect-containing ferroelastic systems, Acta Mater. 58, 5433 (2010)CrossRefGoogle Scholar
  21. 21.
    Y.M. Zhou et al. High temperature strain glass in Ti50(Pd50 − xCrx) alloy and the associated shape memory effect and superelasticity Appl. Phys. Lett. 95, 151906 (2009)Google Scholar
  22. 22.
    Y.C. Ji et al., to be published (2010)Google Scholar
  23. 23.
    S. Ren, BS thesis, Xi’an Jiaotong University, 2007Google Scholar
  24. 24.
    P. Zhang, BS thesis Xi’an Jiaotong University, 2009Google Scholar
  25. 25.
    Y. Ni, BS thesis, Xi’an Jiaotong University, 2009Google Scholar
  26. 26.
    J. Van Humbeeck The Martensitic Transformation, Mechanical Spectroscopy Q − 1 382 (TransTech, Zurich 2001)Google Scholar
  27. 27.
    Q. Tan, J.F. Li, D. Viehland, Role of potassium comodification on domain evolution and electrically induced strains in La modified lead zirconate titanate ferroelectric ceramics. J. Appl. Phys. 88, 3433 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Karmakar, S. Taran, B.K. Chaudhuri, H. Sakata, C.P. Sun, C.L. Huang, H.D. Yang, Disorder-induced short-range ferromagnetism and cluster spin-glass state in sol-gel derived \({\mathrm{La}}_{0.7}{\mathrm{Ca}}_{0.3}{\mathrm{Mn}}_{1-\mathrm{x}}{\mathrm{Cd}}_{\mathrm{x}}{\mathrm{O}}_{3}(0 = \mathrm{x} = 0.2)\). Phys. Rev. B 74, 104407 (2006)Google Scholar
  29. 29.
    D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Glassy polarization behavior of relaxor ferroelectrics. Phy. Rev. B 46, 8013 (1992)CrossRefGoogle Scholar
  30. 30.
    N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R. Rao, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0. 7Ca0. 3Mn1 − xCoxO3 system. Phys. Rev. B 56, 1345 (1997)Google Scholar
  31. 31.
    P. Lloveras, T. Castan et al., Influence of elastic anisotropy on structural nanoscale textures. Phys. Rev. Lett. 100, 165707 (2008)CrossRefGoogle Scholar
  32. 32.
    P. Lloveras, T. Castan et al., Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments. Phys. Rev. B 80, 054107 (2009)CrossRefGoogle Scholar
  33. 33.
    D. Wang, Y. Wang, Z. Zhang X. Ren Modeling abnormal strain states in ferroelastic systems: the role of point defects Phys. Rev. Lett. 105, 20570 (2010)Google Scholar
  34. 34.
    D. Sherrington, S. Kirkpatrick Solvable model of a spin-glass Phys. Rev. Lett. 35, 1792 (1975)Google Scholar
  35. 35.
    S. Kirkpatrick, D. Sherrington Infinite-ranged models of spin-glasses Phys. Rev. B 17, 4384 (1978)Google Scholar
  36. 36.
    D. Sherrington A simple spin glass perspective on martensitic shape-memory alloys J. Phys.: Condens. Matter. 20, 304213 (2008)Google Scholar
  37. 37.
    R. Vasseur T. Lookman Effects of disorder in ferroelastics: A spin model for strain glass. Phys. Rev. B 81, 094107 (2010)Google Scholar
  38. 38.
    T. Kakeshita, T. Fukuda, H. Tetsukawa et al., Negative temperature coefficient of electrical resistivity in B2-Type Ti–Ni Alloys. Jpn. J. Appl. Phys. 37, 2535 (1998)CrossRefGoogle Scholar
  39. 39.
    X. Ren, et al., Ferroelastic nanostructures and nanoscale transitions: ferroics with point defects. MRS Bull. 34, 838 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ferroic Physics GroupNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations