Skip to main content

Strain Glass and Strain Glass Transition

  • Chapter
  • First Online:
Disorder and Strain-Induced Complexity in Functional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

Strain glass is a frozen disordered ferroelastic state with short-range strain order only. It is a conjugate state to the long-range ordered ferroelastic state or martensite. In this chapter, recent progress in strain glass and strain glass transition is reviewed. It is shown that a strain glass bears all the features of a glass, being parallel to other types of glasses such as relaxor ferroelectrics and cluster-spin glasses. Novel properties of strain glass are demonstrated. The origin of strain glass is discussed in terms of its relation to point defects. Finally, it is shown that the insight gained from strain glass may be able to solve a number of long-standing puzzles in ferroelastic community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Careri, Order and Disorder in Matter (AddisonWesley, Massachusetts 1984)

    Google Scholar 

  2. X Ren, Y. Wang et al., Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass Philos. Mag 90, 141 (2010)

    Google Scholar 

  3. V.K. Wadhawan, Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000)

    Google Scholar 

  4. K. Binder, W. Kob, Glassy Materials and Disordered Solids (World Scientific, London, 2005)

    Google Scholar 

  5. R.N. Bhowmik, R. Ranganathan, Anomaly in cluster glass behaviour of Co0. 2Zn0. 8Fe2O4 spinel oxide. J. Magn. Magn. Mater. 248, 101 (2002)

    Google Scholar 

  6. R.T. Zhang, J.F. Li, D. Vieland, Effect of aliovalent substituents on the ferroelectric properties of modified barium titanate ceramics – Relaxor Ferroelectric Behavior. J. Am. Ceram. Soc. 87, 864 (2004)

    Article  CAS  Google Scholar 

  7. S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)

    Article  Google Scholar 

  8. S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52, 803 (1995)

    Article  CAS  Google Scholar 

  9. S. Semenovskaya, A.G. Khachaturyan, Coherent structural transformations in random crystalline systems. Acta Mater. 45, 4367 (1997)

    Article  CAS  Google Scholar 

  10. A. Planes, L. Manosa, Vibrational properties of shape-memory alloys. Solid State Phys. 55, 159 (2001)

    Article  CAS  Google Scholar 

  11. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005)

    Article  CAS  Google Scholar 

  12. S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\). Phys. Rev. Lett. 95, 205702 (2005)

    Article  Google Scholar 

  13. Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006)

    Article  Google Scholar 

  14. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys. Rev. B. 76, 132201 (2007)

    Article  Google Scholar 

  15. Y. Wang, X. Ren, K. Otsuka, A. Saxena Temperature-stress phase diagram of strain glass Ti48. 5Ni51. 5 Acta Mater. 56, 2885 (2008)

    Google Scholar 

  16. Y. Wang, X. Ren, K. Otsuka Strain glass: glassy Martensite, Mater. Sci. Forum. 583, 67 (2008)

    Google Scholar 

  17. Y. Wang et al., Evolution of the relaxation spectrum during the strain glass transition of Ti48. 5Ni51. 5 alloy. Acta Mater. 58, 4723 (2010)

    Google Scholar 

  18. Z. Zhang et al., Phase diagram of \({\mathrm{Ti}}_{50-\mathrm{x}}{\mathrm{Ni}}_{50+\mathrm{x}}\): Crossover from martensite to strain glass. Phys. Rev. B 81, 22402 (2010)

    Google Scholar 

  19. D. Wang et al., Strain glass in Fe-doped Ti-Ni Acta Mater 58 6206 (2010)

    CAS  Google Scholar 

  20. Y.M. Zhou et al., Strain glass in doped Ti50(Ni50 − xDx) (D = Co, Cr, Mn) alloys – Implication for the generality of strain glass in defect-containing ferroelastic systems, Acta Mater. 58, 5433 (2010)

    Article  CAS  Google Scholar 

  21. Y.M. Zhou et al. High temperature strain glass in Ti50(Pd50 − xCrx) alloy and the associated shape memory effect and superelasticity Appl. Phys. Lett. 95, 151906 (2009)

    Google Scholar 

  22. Y.C. Ji et al., to be published (2010)

    Google Scholar 

  23. S. Ren, BS thesis, Xi’an Jiaotong University, 2007

    Google Scholar 

  24. P. Zhang, BS thesis Xi’an Jiaotong University, 2009

    Google Scholar 

  25. Y. Ni, BS thesis, Xi’an Jiaotong University, 2009

    Google Scholar 

  26. J. Van Humbeeck The Martensitic Transformation, Mechanical Spectroscopy Q − 1 382 (TransTech, Zurich 2001)

    Google Scholar 

  27. Q. Tan, J.F. Li, D. Viehland, Role of potassium comodification on domain evolution and electrically induced strains in La modified lead zirconate titanate ferroelectric ceramics. J. Appl. Phys. 88, 3433 (2000)

    Article  CAS  Google Scholar 

  28. S. Karmakar, S. Taran, B.K. Chaudhuri, H. Sakata, C.P. Sun, C.L. Huang, H.D. Yang, Disorder-induced short-range ferromagnetism and cluster spin-glass state in sol-gel derived \({\mathrm{La}}_{0.7}{\mathrm{Ca}}_{0.3}{\mathrm{Mn}}_{1-\mathrm{x}}{\mathrm{Cd}}_{\mathrm{x}}{\mathrm{O}}_{3}(0 = \mathrm{x} = 0.2)\). Phys. Rev. B 74, 104407 (2006)

    Google Scholar 

  29. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Glassy polarization behavior of relaxor ferroelectrics. Phy. Rev. B 46, 8013 (1992)

    Article  Google Scholar 

  30. N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R. Rao, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0. 7Ca0. 3Mn1 − xCoxO3 system. Phys. Rev. B 56, 1345 (1997)

    Google Scholar 

  31. P. Lloveras, T. Castan et al., Influence of elastic anisotropy on structural nanoscale textures. Phys. Rev. Lett. 100, 165707 (2008)

    Article  Google Scholar 

  32. P. Lloveras, T. Castan et al., Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments. Phys. Rev. B 80, 054107 (2009)

    Article  Google Scholar 

  33. D. Wang, Y. Wang, Z. Zhang X. Ren Modeling abnormal strain states in ferroelastic systems: the role of point defects Phys. Rev. Lett. 105, 20570 (2010)

    Google Scholar 

  34. D. Sherrington, S. Kirkpatrick Solvable model of a spin-glass Phys. Rev. Lett. 35, 1792 (1975)

    Google Scholar 

  35. S. Kirkpatrick, D. Sherrington Infinite-ranged models of spin-glasses Phys. Rev. B 17, 4384 (1978)

    CAS  Google Scholar 

  36. D. Sherrington A simple spin glass perspective on martensitic shape-memory alloys J. Phys.: Condens. Matter. 20, 304213 (2008)

    Google Scholar 

  37. R. Vasseur T. Lookman Effects of disorder in ferroelastics: A spin model for strain glass. Phys. Rev. B 81, 094107 (2010)

    Google Scholar 

  38. T. Kakeshita, T. Fukuda, H. Tetsukawa et al., Negative temperature coefficient of electrical resistivity in B2-Type Ti–Ni Alloys. Jpn. J. Appl. Phys. 37, 2535 (1998)

    Article  CAS  Google Scholar 

  39. X. Ren, et al., Ferroelastic nanostructures and nanoscale transitions: ferroics with point defects. MRS Bull. 34, 838 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks T. Lookman, A. Saxena, D. Sherrington, Y. Wang, D. Wang, Z. Zhang, Y.M. Zhou, J. Zhang, Y.Z. Wang, T. Suzuki, and K. Otsuka for discussions. He also acknowledges the financial support from Kakenhi of JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, X. (2012). Strain Glass and Strain Glass Transition. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics