Advertisement

Understanding Glassy Phenomena in Materials

  • David Sherrington
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 148)

Abstract

A basis for understanding and modelling glassy behaviour in martensitic alloys and relaxor ferroelectrics is discussed from the perspective of spin glasses.

Keywords

Spin Glass Relaxor Ferroelectric Spin Glass Phase Martensitic Alloy Spin Glass System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is grateful to Avadh Saxena and Turab Lookman for introducing him to martensitic shape-memory alloys and for useful discussions on the topic over many years of visits to Los Alamos National Laboratory, whose hospitality he also acknowledges. Also, in connection with martensitic alloys, he has appreciated correspondence with Jim Sethna and Xiaobing Ren. He thanks Roger Cowley, his colleague at Oxford, for introducing him to relaxor ferroelectrics, for informing him of several results and comparisons and for useful discussions on how to model and understand, and also Wolfgang Kleemann for very helpful comments on a draft of this paper and for drawing his attention to other relevant works on relaxors. Finally, he apologises again to the experts in martensites and relaxors whose work he has not acknowledged and indeed much of which he is insufficiently familiar with, but if he waited until he had had an opportunity to read, absorb and understand everything that has been done and written about, this article would not have been completed. Hopefully it will stimulate reactions, even if only of correction and objection.

References

  1. 1.
    D. Sherrington, Physics and complexity. Philos.Trans. R. Soc. A 368, 1175 (2010)CrossRefGoogle Scholar
  2. 2.
    K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986)CrossRefGoogle Scholar
  3. 3.
    D. Sherrington, Spin glasses: a Perspective, ed by. E. Bolthausen, A. Bovier, Spin Glasses (Springer, Berlin, 2006)Google Scholar
  4. 4.
    M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)Google Scholar
  5. 5.
    H. Nishimori, Statistical Physics of Spin Glasses and Neural Networks (Oxford University Press, Oxford, 2001)Google Scholar
  6. 6.
    M. Mézard, A. Montanari, Information, Physics and Computation (Oxford University Press, Oxford, 2009)CrossRefGoogle Scholar
  7. 7.
    M. Talagrand, Spin glasses: a Challenge for Mathematicians (Springer, Berlin 2003)Google Scholar
  8. 8.
    A. Bovier, Statistical Physics of Disordered Systems: a Mathematical Perspective (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  9. 9.
    J. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1995)Google Scholar
  10. 10.
    H. Maletta, W. Zinn, Spin glasses, ed by K.A. Gschneider Jr., L. Eyring, Handbook on the Physics and Chemistry of Rare Earths, vol. 12, (Elsevier, North-Holland, 1989), p. 213Google Scholar
  11. 11.
    M. Heimel, M. Pleiming, R. Sanctuary, (eds.), Ageing and the Glass Transition,(Springer, Berlin, 2007)Google Scholar
  12. 12.
    B.R. Coles, B. Sarkissian, R.H. Taylor, The role of finite magnetic clusters in Au-Fe alloys near the percolation concentration. Phil. Mag. B 37, 489 (1978)Google Scholar
  13. 13.
    H. Maletta, P. Convert, Onset of ferromagnetism in EuxSr1-xS near x=0.5. Phys. Rev. Lett. 42, 108 (1979)Google Scholar
  14. 14.
    D. Sherrington, S. Kirkpatrick, Solvable model of a spin glass. Phys. Rev.Lett. 35, 1972 (1975)CrossRefGoogle Scholar
  15. 15.
    V. Dupuis, E. Vincent, J.-P. Bouchaud, J. Hammann, A. Ito, H. Aruga Katori, Aging, rejuvenation, and memory effects in Ising and Heisenberg spin glasses. Phys. Rev. B 64, 174204 (2001)CrossRefGoogle Scholar
  16. 16.
    S.Nagata, P.H.Keesom, H.R.Harrison, Low-dc-field susceptibility of CuMn spin glass. Phys. Rev. B19, 1633 (1979)Google Scholar
  17. 17.
    S.F. Edwards, P.W. Anderson, Theory of spin glasses. J. Phys. F 5, 965 (1975)CrossRefGoogle Scholar
  18. 18.
    K. Bhattacharya, Microstructure of Martensite (Oxford University Press, 2003)Google Scholar
  19. 19.
    D. Sherrington: A simple spin glass perspective on martensitic shape-memory alloys, J. Phys. Cond. Mat. 20, 304213 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Kartha, T. Castán, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 67, 3630 (1991)CrossRefGoogle Scholar
  21. 21.
    S. Kartha, J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B52, 803 (1995)Google Scholar
  22. 22.
    S.R. Shenoy, T. Lookman, Strain pseudospins with power-law interactions: Glassy textures of a cooled coupled-map lattice. Phys. Rev. B 78, 144103 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Lookman, S.R. Shenoy, K.Ø. Rasmussen, A. Saxena, A.R. Bishop, Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 024114 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system \({\mathrm{Ti}}_{50-x}{\mathrm{Ni}}_{50+x}\). Phys. Rev. Lett. 95, 205702 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007)CrossRefGoogle Scholar
  26. 26.
    N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R. Rao, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0. 7Ca0. 3Mn1 − xCoxO3 system. Phys. Rev. B 56, 1345 (1997)Google Scholar
  27. 27.
    X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hoi, X. Ding, Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Phil. Mag. 90, 141 (2010)CrossRefGoogle Scholar
  28. 28.
    J.P. Sethna, C.R. Myers, Martensitic tweed and the two-way shape-memory effect. arXiv:cond-mat/970203 (1997)Google Scholar
  29. 29.
    L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241 (1987)Google Scholar
  30. 30.
    W. Kleemann, Random fields in dipole glasses and relaxors. J. Non-Cryst. Solids 307–310, 66 (2002); The relaxor enigma – charge disorder and random fields in ferroelectrics, J. Mater. Sci. 41, 129 (2006)Google Scholar
  31. 31.
    R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Relaxing with relaxors: a review of relaxor ferroelectrics, Advances in Physics 60(2), 229 (2011)Google Scholar
  32. 32.
    V. Westphal, W. Kleemann, M.D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric \({\mathrm{PbMg}}_{1/3}{\mathrm{Nb}}_{2/3}{\mathrm{O}}_{3}\). Phys. Rev. Lett. 68, 847 (1992)CrossRefGoogle Scholar
  33. 33.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranoyskaya, S.N. Popov, Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State 2, 2584 (1961)Google Scholar
  34. 34.
    G.V. Lecomte, H. von Löhneysen, E.F. Wassermann, Frequency dependent magnetic susceptibility and spin glass freezing in PtMn alloys. Z. Phys. B 50, 239 (1983)CrossRefGoogle Scholar
  35. 35.
    A.P. Young (ed.), Spin Glasses and Random Fields (World Scientific, Singapore, 1998)Google Scholar
  36. 36.
    Y. Imry, S-K. Ma, Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 13909 (1975)Google Scholar
  37. 37.
    M. Mzard, R. Monasson, Glassy transition in the three-dimensional Ising model. Phys. Rev. B 50, 7199 (1994)CrossRefGoogle Scholar
  38. 38.
    F. Krzakala, F. Ricci-Tersenghi, L. Zdeborová, Elusive glassy phase in the random field Ising model. Phys. Rev. Lett. 104, 207208 (2010)CrossRefGoogle Scholar
  39. 39.
    F. Krzakala, F. Ricci-Tersenghi, D. Sherrington, L. Zdeborová, No spin glass phase in ferromagnetic random-field random-temperature scalar Ginzburg-Landau model. J. Phys. A: Math. Theor. 44, 042003 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Yoshizawa, R. Cowley, G. Shirane, R.J. Birgenau, Neutron scattering study of the effect of a random field on the three-dimensional dilute Ising antiferromagnet Fe0. 6Zn0. 4F2. Phys. Rev. B 31, 4548 (1985)Google Scholar
  41. 41.
    P. Pollak, W. Kleemann, D.P. Belanger, Metastability of the uniform magnetization in three-dimensional random-field Ising model systems. II Fe0. 47Zn0. 53F2. Phys. Rev. B 38, 4773 (1988)Google Scholar
  42. 42.
    F.C. Montenegro, A.R. King, V. Jaccarino, S-J. Han, D.P. Belanger, Random-field-induced spin-glass behavior in the diluted Ising antiferromagnet Fe0. 31Zn0. 69F2. Phys. Rev. B 44, 2155 (1991)Google Scholar
  43. 43.
    W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, P. Pankrath, Uniaxial relaxor ferroelectrics: The ferroic random-field Ising model materialized at last. Europhys. Lett. 57, 14 (2002)CrossRefGoogle Scholar
  44. 44.
    S.K. Ghatak, D. Sherrington, Crystal field effects in a general S Ising spin glass. J. Phys. C 10, 3149 (1977)CrossRefGoogle Scholar
  45. 45.
    A. Crisanti, L. Leuzzi, Thermodynamic properties of a full-replica-symmetry-breaking Ising spin glass on lattice gas: The random Blume-Emery-Griffiths-Capel model. Phys. Rev. B 70, 014409 (2004)CrossRefGoogle Scholar
  46. 46.
    R. Vasseur, T. Lookman, Effects of disorder in ferroelastics: A spin glass model for strain glass, Phys. Rev. B 81, 094107 (2010)CrossRefGoogle Scholar
  47. 47.
    S. Shenoy, T. Lookman, A. Saxena, A.R. Bishop, Martensitic textures: Multiscale consequences of elastic compatibility. Phys. Rev. B 60, R12537 (1999)CrossRefGoogle Scholar
  48. 48.
    See for example [17] and references therein; also M. Vojta, Lattice symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity. Adv. Phys. 58, 699 (2009)Google Scholar
  49. 49.
    R. Blinc, R. Pirc, Spherical random-bond–random-field model of relaxor ferroelectrics. Phys. Rev. Lett. 83, 424 (1999)CrossRefGoogle Scholar
  50. 50.
    D. Wang, Y. Wang, Z. Zhang, X. Ren, Modeling abnormal strain states in ferroelastic systems; the role of point defects. Phys. Rev. Lett. 105, 205702 (2010)CrossRefGoogle Scholar
  51. 51.
    X. Ren, Strain Glass and Strain Glass Transition, this book, chapter 11.Google Scholar
  52. 52.
    A. Guiliani, J.L. Lebowitz, E.H. Lieb, Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions. Phys. Rev. B 74, 064420 (2006)CrossRefGoogle Scholar
  53. 53.
    M. Porta, T. Castán, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Interfaces in ferroelastics: Fringing fields, microstructure, and size and shape effects. Phys. Rev. B79, 214117 (2009)Google Scholar
  54. 54.
    M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, (W.H.Freeman, New York, 1979)Google Scholar
  55. 55.
    N. Schupper, N.M. Scherb, Inverse melting and inverse freezing: a spin model. Phys. Rev. E 72, 046107 (2005)CrossRefGoogle Scholar
  56. 56.
    D. Elderfield, D. Sherrington, The curious case of the Potts spin glass. J. Phys. C 16, 4865 (1983)CrossRefGoogle Scholar
  57. 57.
    S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D 42, 013001 (2009)CrossRefGoogle Scholar
  58. 58.
    J.F. Fernández, Equilibrium spin-glass transition of magnetic dipoles with random anisotropy axes. Phys. Rev. B 78, 064404 (2008)CrossRefGoogle Scholar
  59. 59.
    J.F. Fernandez, J.J. Alonso, Equilibrium spin-glass transition of magnetic dipoles with random anisotropy axes on a site diluted lattice. Phys. Rev. B 79, 214424 (2009)CrossRefGoogle Scholar
  60. 60.
    S. Boettcher, A.G. Percus, Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211 (2001)CrossRefGoogle Scholar
  61. 61.
    X. Ren, Y. Wang, K. Otsuka, P. Loveras, T. Castán, M. Porta, A. Planes, A. Saxena, Ferroelastic nanostructures and nanoscale transitions: ferroics with point defects. MRS Bull. 34, 838 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Santa Fe InstituteSanta FeUSA
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations