Skip to main content

Domain Boundary Engineering in Ferroic and Multiferroic Materials: A Simple Introduction

  • Chapter
  • First Online:
Book cover Disorder and Strain-Induced Complexity in Functional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

Multiferroic behavior is commonly described as a bulk phenomenon where, at least, two of the three ferroic properties, ferromagnetism, ferroelectricity, and ferroelasticity, coincide. This notion is enlarged to contain as another “useful” property electrical conductivity. While bulk applications are potentially useful, we describe the recent development where the same properties are restricted to domain boundaries or interfaces, while the adjacent domains are not active elements themselves. This means that the information is restricted to thin, nearly two-dimensional slabs of some 2 nm thickness. The information density is, thus, extremely high, while conducting interfaces can serve as wires to connect the active elements. In this chapter, we discuss the underlying physical principles for the “engineering” of interfacial multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Ascher, H. Rieder, H. Schmid, H. Stossel, Some properties of ferromagnetoelectric nickel-iodine boracite Ni3B7O13. J. Appl. Phys. 37, 140 (1966)

    Article  Google Scholar 

  2. S. Kinge, M. Crego-Calama, D.N. Reinhoudt, Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 1, 20 (2008)

    Article  Google Scholar 

  3. M. Fiebig, Revival of the magnetoelectric effect. J. Appl. Phys. D 38, R123 (2005)

    Article  CAS  Google Scholar 

  4. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  5. A. Lubk, S. Gemming, N.A. Spaldin, First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, art. 104110, (2009)

    Google Scholar 

  6. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)

    CAS  Google Scholar 

  7. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Elastic behavior associated with phase transitions in incommensurate Ba2NaNb5O15. Phys. Rev. B 71, art. 014113 (2005)

    Google Scholar 

  8. E.K.H. Salje, Phase Transitions in ferroelastic and co-elastic crystals (Cambridge University Press, Cambridge, UK, 1993)

    Google Scholar 

  9. J.C. Lashley, S.M. Shapiro, B.L. Winn, et al., Observation of a continuous phase transition in a shape-memory alloy. Phys. Rev. Lett. 101, art. 135703 (2008)

    Google Scholar 

  10. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  11. E.K.H. Salje, Multiferroic domain boundaries as active memory devices: Trajectories towards domain boundary engineering. ChemPhysChem 11, 940 (2010)

    CAS  Google Scholar 

  12. S. Marais, V. Heine. C. Nex, et al., Phenomena due to strain coupling in phase – transitions. Phys. Rev. Lett. 66, 2480 (1991)

    Google Scholar 

  13. M.A. Carpenter, E.K.H. Salje, Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral. 10, 693 (1998)

    CAS  Google Scholar 

  14. S.H. Lim, M. Murakami, W.L. Sarney, et al., The effects of multiphase formation on strain relaxation and magnetization in multiferroic BiFeO3 thin films. Adv. Func. Mater. 17, 2594 (2007)

    Article  CAS  Google Scholar 

  15. R.D. James, M. Wuttig, Magnetostriction of martensite. Phil Mag. A 77, 1273 (1998)

    Article  CAS  Google Scholar 

  16. K. Mori, M. Wuttig, Magnetoelectric coupling in terfenol-D/polyvinylidenedifluoride composites, Appl. Phys. Lett. 81, 100 (2002)

    Article  CAS  Google Scholar 

  17. J. Wang, J.B. Neaton, H. Zheng, et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2002)

    Article  Google Scholar 

  18. J. Seidel, L.W. Martin, Q. He, et al., Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)

    Article  CAS  Google Scholar 

  19. N. Hur, S. Park, P.A. Sharma, et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)

    Article  CAS  Google Scholar 

  20. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B 71, art. 060401 (2005)

    Google Scholar 

  21. A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys.: Condens. Matter 10, L377 (1998)

    Google Scholar 

  22. B. Nagaraj, T. Sawhney, S. Perusse, et al., (BaSr)TiO3 thin films with conducting perovskite electrodes for dynamic random access memory applications. Appl. Phys. Lett. 74, 3194 (1999)

    Article  CAS  Google Scholar 

  23. S. Ramesh, V.P. Kumar, P. Kistaiah, et al., Preparation, characterization and thermo electrical properties of co-doped Ce0.8- xSM0.2CaxO2 (-) (delta) materials. Solid State Ionics 181, 86 (2010)

    Google Scholar 

  24. T. Shimada, S. Tomoda, T. Kitamura, Ab initio study of ferroelectric closure domains in ultrathin PbTiO3 films. Phys. Rev. B 81, art 144116 (2010)

    Google Scholar 

  25. S.E. Barnes, S. Maekawa, Current-spin coupling for ferromagnetic domain walls in fine wires. Phys. Rev. Lett. 95, art. 107204 (2005)

    Google Scholar 

  26. E.K.H. Salje, J. Chrosch, R.C. Ewing, Is “metamictization” of zircon a phase transition? Am. Mineral. 84, 1107 (1999)

    CAS  Google Scholar 

  27. S. Rios, E.K.H. Salje, M. Zhang, et al., Amorphization in zircon: evidence for direct impact damage, J. Phys.: Condens. Matter 12, 2401 (2000)

    Google Scholar 

  28. S. Sarkar, X.B. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x. Phys. Rev. Lett. 95, art. 205702 (2005)

    Google Scholar 

  29. B. Noheda, D.E. Cox, G. Shirane, et al., Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO(3), Phys. Rev. B 66, art. 054104 (2002)

    Google Scholar 

  30. A. Levstik, Z. Kutnjak, C. Filipic, et al., Glassy freezing in relaxor ferroelectric lead magnesium niobate. Phys. Rev. B 57, 11204 (1998)

    Article  CAS  Google Scholar 

  31. G.A. Samara, The relaxational properties of compositionally disordered ABO(3) perovskites. J. Phys.: Condens. Matter 15, R367 (2003)

    Google Scholar 

  32. J. Chrosch, E.K.H. Salje, Near-surface domain structures in uniaxially stressed SrTiO3. J. Phys.: Condens. Matter 85, 722 (1999)

    Google Scholar 

  33. J. Chrosch, E.K.H. Salje, Temperature dependence of the domain wall width in LaAlO3. J. Appl. Phys. 85, 722 (1999)

    Article  CAS  Google Scholar 

  34. B. Wruck, E.K.H. Salje, M. Zhang, et al., On the thickness of ferroelastic twin walls in lead phosphate Pb3(PO4)2 – an X-ray diffraction study. Phase Transit. 48, 135 (1994)

    Article  CAS  Google Scholar 

  35. E.K.H. Salje, H. Zhang, A. Planes, et al., Martensitic transformation B2-R in Ni-Ti-Fe: experimental determination of the Landau potential and quantum saturation of the order parameter. J. Phys.: Condens. Matter 20, art. 275216 (2008)

    Google Scholar 

  36. E.K.H. Salje, H. Zhang, D. Schryvers, et al., Quantitative Landau potentials for the martensitic transformation in Ni-Al. Appl. Phys. Lett. 90, art. 221903 (2007)

    Google Scholar 

  37. M. Calleja, M.T. Dove, E.K.H. Salje, Trapping of oxygen vacancies on twin walls of CaTiO3: a computer simulation study. J. Phys.: Condens. Matter 15, 2301 (2003)

    Google Scholar 

  38. W.T. Lee, E.K.H. Salje, L. Goncalves-Ferreira, et al., Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3. Phys. Rev. B 73, art. 214110 (2006)

    Google Scholar 

  39. L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, et al., Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101, art. 097602 (2008)

    Google Scholar 

  40. L. Goncalves-Ferreira, S.A.T. Redfern, E. Atacho, et al., The intrinsic elasticity of twin walls: Ferrielectric twin walls in ferroelastic CaTiO3. Appl. Phys. Lett. 94, art. 081903 (2009)

    Google Scholar 

  41. L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, et al., Trapping of oxygen vacancies in the twin walls of perovskite. Phys. Rev. B 81, art. 024109 (2010)

    Google Scholar 

  42. P. Zubko, G. Catalan, P.R.L. Welche, A. Buckley, J.F. Scott, Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, art.167601 (2007)

    Google Scholar 

  43. A.K. Tagantsev, E. Courtens, L. Arzel, Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, art.224107 (2001)

    Google Scholar 

  44. J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsky, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorny, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Waser, Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries. Phys. Rev. B 64, art.184111 (2001)

    Google Scholar 

  45. W. Zhong, D. Vanderbilt, Competing structural instabilities in cubic perovskites. Phys. Rev. Lett.74, art. 2587 (1995)

    Google Scholar 

  46. E.K.H. Salje, A pre-martensitic elastic anomaly in nanomaterials: elasticity of surface and interface layers. J. phys.: Condens. Matter 20, art. 485003 (2008)

    Google Scholar 

  47. A. Aird, E.K.H. Salje, Enhanced reactivity of domain walls in WO3 with sodium. Eur. Phys. J. B 15, 205 (2000)

    CAS  Google Scholar 

  48. A. Aird, M.C. Domeneghetti, F. Mazzi, et al., Sheet superconductivity in WO3-x: crystal structure of the tetragonal matrix, J. Phys.: Condens. Matter 10, L569 (1998)

    Google Scholar 

  49. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  50. E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmanndörfer, M.T Dove, Crystal structure and paramagnetic behaviour of epsilon-WO3-x. J. Phys.: Condens. Matter 9, 6563 (1997)

    Google Scholar 

  51. E. Salje, A.F. Carley, M.W. Roberts, Effect of reduction and temperature on the electronic core levels of tungsten and molybdenum in WO3 and WxMo1-xO3 – photoelectron spectroscopy study. J. Solid State Chem. 29, 237 (1979)

    Article  CAS  Google Scholar 

  52. F.H. Jones, K. Rawlings, J.S. Foord, R.G. Egdell, J.B. Pethica, B.M.R. Wanklyn, S.C. Parker, P.M. Olive, An STM study of surface structures on WO3(001). Surf. Sci. 359, 107 (1996)

    Article  CAS  Google Scholar 

  53. O.F. Schirmer, E. Salje, Conduction bipolarons in low-temperature crystalline WO3-x. J. Phys.: Condens. Matter 13, 1067 (1980)

    Google Scholar 

  54. O.F. Schirmer, E. Salje, W5+ polaron in crystalline low-temperature WO3 electron spin resonance and optical absorption. Solid State Comm. 33, 333 (1980)

    Article  CAS  Google Scholar 

  55. S. Reich, G. Leitus, R. Popovitz-Biro, A. Goldbourt, S. Vega, A possible 2D H (x) WO3 superconductor with a T (c) of 120 K. J. Supercond. Novel Magnetism 22, 343 (2009) and reference given there

    Google Scholar 

  56. Y. Kim, M. Alexe, E.K.H. Salje, Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3-x. Appl. Phys. Lett. 96, art. 032904 (2010)

    Google Scholar 

  57. E. Vives, J. Ortin, L. Manosa, et al., Distribution of avalanches in martensitic transformations. Phys. Rev. Lett. 72, 1694 (1994)

    Article  CAS  Google Scholar 

  58. E. Bonnot, E. Vives, L. Mañosa, et al., Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition. Phys. Rev. B 78, art. 094104 (2008)

    Google Scholar 

  59. M.C. Kuntz, J.P. Sethna, Noise in disordered systems: The power spectrum and dynamic exponents in avalanche model. Phys. Rev. B 62, art. 11699 (2000)

    Google Scholar 

  60. M.C. Gallardo, J. Manchado, F.J. Romero, et al., Avalanche criticality in the martensitic transition of Cu67.64Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81, art.174102 (2010)

    Google Scholar 

  61. E.K.H. Salje, L. Koppensteiner, M. Reinecker, et al., Jerky elasticity: Avalanches and the martensitic transition in Cu74.08Al23.13Be2.79 shape-memory alloy. Appl. Phys. Lett. 95, art. 231908 (2009)

    Google Scholar 

  62. A. Rosso, P. Le Doussal, K.J. Wiese, Avalanche-size distribution at the depinning transition: A numerical test of the theory. Phys. Rev. B 80, art. 144204 (2009)

    Google Scholar 

  63. M.C. Kuntz, O. Perkovic, K.A. Dahmen, et al., Hysteresis, avalanches, and noise. Comput. Sci. Eng. 1, 73 (1999)

    Article  Google Scholar 

  64. L. Proville, Depinning of a discrete elastic string from a random array of weak pinning points with finite dimensions. J. Stat. Phys. 137, 717 (2009)

    Article  CAS  Google Scholar 

  65. E.K.H. Salje, Y. Ishibashi, Mesoscopic structures in ferroelastic crystals: Needle twins and right-angled domains. J. Phys.: Condens. Matter 8, 8477 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekhard K. H. Salje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salje, E.K.H., Lashley, J.C. (2012). Domain Boundary Engineering in Ferroic and Multiferroic Materials: A Simple Introduction. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics