Skip to main content

Advances Concerning Lignin Utilization in New Materials

  • Chapter
  • First Online:
Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

After cellulose, lignin represents the second main component of vegetal biomass. The estimation of lignin produced annually through biosynthesis indicates a quantity of 2x1010 tons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldman, D., Lacasse, M., Beznaczuk, L.M.: Lignin—polymer systems and some applications. Prog. Polym. Sci. 12, 271–299 (1986)

    Article  CAS  Google Scholar 

  2. Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J.P., Boudet, A.M.: In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28, 271–282 (2001)

    Article  CAS  Google Scholar 

  3. Barghoorn, E.S.: Evolution of cambium in geologic time. In: Zimmermann, M.H. (ed.) Formation of Wood in Forest Trees, pp. 3–17. Academic Press, New York (1964)

    Google Scholar 

  4. Lopez, M.J., Vargas-Garcia, M.C., Suarez-Estrella, F., Moreno, J.: Biodelignification and humification of horticultural plant residues by fungi. Intern. Biodeter. Biodegrad 57(1), 24–30 (2006)

    Article  CAS  Google Scholar 

  5. McMorrow J.M., Al-Roichdi A., Evans M.G., Cutler M.E.: Estimation of humification of exposed upland peat from HyMap and ASD spectra, The airbone imaging spectroscopy workshop, Bruges, October 8, (2004) http://eo.belspo.be/Docs/Resources/Publications/bruhyp2004/McMorrow.pdf

  6. Stevenson, F.J., Butler, J.H.A.: Chemistry of humic acids and related pigments. In: Englinton, G.E., Murphy, M.T.J. (eds.) Organic Geochemistry, pp. 534–556. Springer, Berlin (1969)

    Google Scholar 

  7. Espiñeira, J.M., Uzal, E.N., Ros, L.V.G., Carrión, J.S., Merino, F., Barceló, A.R., Pomar, F.: Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13(1), 59–68 (2010)

    Article  CAS  Google Scholar 

  8. Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W., Somerville, C., Ralph, J.: Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19, 169–175 (2009)

    Article  CAS  Google Scholar 

  9. Li, X., Chapple, C.: Understanding lignification: challenges beyond monolignols biosynthesis. Plant Physiol. 154, 449–452 (2010)

    Article  CAS  Google Scholar 

  10. Weng, J.K., Banks, J.A., Chapple, C.: Independent origins of syringyl lignin in vascular plants. Proc. Natl. Acad. Sci. U. S. A 105, 7887–7892 (2008)

    Article  CAS  Google Scholar 

  11. Weng, J.K., Banks, J.A., Chapple, C.: Parallels in lignin biosynthesis: a study in Selaginella moellendorffii reveals convergence across 400 million years of evolution. Commun. Integr. Biol. 1, 20–22 (2008)

    Article  CAS  Google Scholar 

  12. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W.: Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010)

    Article  CAS  Google Scholar 

  13. Goheen D.W., Hoyt C.H.: Lignin, in encyclopedia of chemical technology, Kirk-Othmer, vol. 14, 3rd edn. pp. 294–312. (1978)

    Google Scholar 

  14. Sjöström, E.: In: Sjoström, E. (ed.) Lignin, in Wood Chemistry, Fundamentals and Applications, pp. 71–89. Academic Press, New York (1993)

    Google Scholar 

  15. Rozmarin, Gh.: In Macromolecular Fundamentals in Wood Chemistry, pp. 29–40. Technical Publishing House, Bucuresti (1984)

    Google Scholar 

  16. Meister, J.J.: Modification of lignin. J. Macromol. Sci. Polym. Rev. C24(2), 235–289 (2002)

    Article  Google Scholar 

  17. Chen C. L.: Lignin: occurrence in woody tissues, isolation, reactions, and structure. In: Lewin M., Goldstein I. S. (eds.) Wood Structure and Composition, pp. 183–261. Marcel Dekker, New York (1991)

    Google Scholar 

  18. Campbell, M.M., Sederoff, R.R.: Variation in lignin content and composition. Mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110, 3–13 (1996)

    CAS  Google Scholar 

  19. Baucher, M., Monties, B., Van Montagu, M., Boerjan, W.: Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17, 125–197 (1998)

    Article  CAS  Google Scholar 

  20. Donaldson, L.A.: Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57, 859–873 (2001)

    Article  CAS  Google Scholar 

  21. Saka, S., Goring, D.A.I.: Localization of lignins in wood cell walls. In: Higuchi, T. (ed.) Biosynthesis and Biodegradation of Wood Components, pp. 51–62. Academic Press, Orlando (1985)

    Google Scholar 

  22. Argyropoulos, D.S., Menachem, S.B.: Lignin. In: Kaplan, D.L. (ed.) Biopolymers from Renewable Resources, pp. 2929–322. Springer, Berlin (1998)

    Google Scholar 

  23. Wardrop, A.B.: Lignification of the plant cell wall. Appl. Polym. Symp 28, 1041–1063 (1976)

    CAS  Google Scholar 

  24. Roussel, M.R., Lim, C.: Dynamic model of lignin growing in restricted spaces. Macromolecules 28, 370–376 (1995)

    Article  CAS  Google Scholar 

  25. Gindl, W., Grabner, M.: Characteristics of spruce (Picea abies (L.) Karst.) latewood formed under abnormally low temperatures. Holzforschung 54, 9–11 (2000)

    Article  CAS  Google Scholar 

  26. Donaldson, L.A.: Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J. 23(2), 161–178 (2002)

    Google Scholar 

  27. Dixon, R.A., Paiva, N.L.: Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097 (1995)

    CAS  Google Scholar 

  28. Vance, C.P., Kirk, T.K., Sherwood, R.T.: Lignification as a mechanism of disease resistance. Ann Rev. Phytopathol. 18, 259–288 (1980)

    Article  CAS  Google Scholar 

  29. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L.: Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161 (2000)

    Article  CAS  Google Scholar 

  30. Morris, C.R., Scott, J.T., Chang, H.M., Sederoff, R.R., O’Malley, D., Kadla, J.F.: Metabolic profiling: a new tool in the study of wood formation. J. Agric. Food Chem. 52, 1427–1434 (2004)

    Article  CAS  Google Scholar 

  31. Yeh, T.F., Morris, C.R., Goldfarb, B., Chang, H.M., Kadla, J.F.: Utilization of polar metabolite profiling in the comparison of juvenile wood and compression wood in loblolly pine (Pinus taeda). Tree Physiol. 26, 1497–1503 (2006)

    Article  CAS  Google Scholar 

  32. Yeh, T.F., Braun, J.L., Goldfard, B., Chang, H.M., Kadla, J.F.: Morphological and chemical variations between juvenile wood, mature wood and compression wood of loblolly pine (Pinus taeda L.). Holzforschung 60, 1–8 (2006)

    Article  CAS  Google Scholar 

  33. Yeh, T.F., Goldfarb, B., Chang, H.M., Peszlen, I., Braun, J.L., Kadla, J.F.: Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforshung 59, 669–674 (2005)

    Article  CAS  Google Scholar 

  34. Cosgrove, D.J.: Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–886 (2005)

    Article  CAS  Google Scholar 

  35. Kaneda, M., Rensing, K.H., Wong, J.C., Banno, B., Mansfield, S.D., Samuels, A.L.: Tracking monolignols during wood development in lodgepole pine. Plant Physiol. 147, 1750–1760 (2008)

    Article  CAS  Google Scholar 

  36. Boija, E., Johansson, G.: Interaction between model membranes and lignin-related compounds studied by immobilized liposome chromatography. Biochim. Biophys. Acta 1758, 620–626 (2006)

    Article  CAS  Google Scholar 

  37. Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003)

    Article  CAS  Google Scholar 

  38. Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E., Hamberger, B., Cullis, I.F., Zhuang, J., Kaneda, M., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., Bohlmann, J., Douglas, C.J.: Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42, 618–640 (2005)

    Article  CAS  Google Scholar 

  39. Gardiner, J.C., Taylor, N.G., Turner, S.R.: Control of cellulose synthase complex localization in developing xylem. Plant Cell 15, 1740–1748 (2003)

    Article  CAS  Google Scholar 

  40. Wightman, R., Turner, S.R.: The role of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54, 794–805 (2008)

    Article  CAS  Google Scholar 

  41. Gutierrez, R., Lindeboom, J.J., Paredez, A.R., Emons, A.M., Ehrhardt, D.W.: Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797–806 (2009)

    Article  CAS  Google Scholar 

  42. Pesquet, E., Korolev, A.V., Calder, G., Lloyd, C.W.: The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20, 744–749 (2010)

    Article  CAS  Google Scholar 

  43. Christensen J.H., Baucher M., O’Connell A.P., van Montagu M., Boerjan W.: Control of lignin biosynthesis. In: Jain S.M., Minocha S.C. (eds.) Molecular Biology of Woody Plants, vol. 1 64, pp. 227–267, For. Sci., Dordrecht, Kluwer (2000)

    Google Scholar 

  44. Harkin, J.M.: Lignin a natural polymeric product of phenol oxidation. In: Taylor, W.I., Battersby, A.R. (eds.) Oxidative Coupling of Phenols, pp. 243–321. Marcel Dekker, New York (1967)

    Google Scholar 

  45. Harkin, J.M.: Lignin. In: Butler, G.W. (ed.) Chemistry and Biochemistry of Herbage, pp. 323–373. Academic Press, London (1973)

    Google Scholar 

  46. Freudenberg K., Neish A.C.: Constitution and Biosynthesis of Lignin, Springer, Berlin, p. 129 (1968)

    Google Scholar 

  47. Brunow, G.: Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis, N.G., Sarkanen, S. (eds.) Lignin and Lignan Biosynthesis, pp. 131–147. Am. Chem. Soc, Washington (1998)

    Chapter  Google Scholar 

  48. Rippert, P., Puyaubert, J., Grisollet, D., Derrier, L., Matringe, M.: Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol. 149, 1251–126 (2009)

    Article  CAS  Google Scholar 

  49. Kärkönen, A., Koutaniemi, S.: Lignin biosynthesis studies in plant tissue cultures. J. Integrative Plant Biol 52(2), 176–185 (2010)

    Article  CAS  Google Scholar 

  50. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W.: Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010)

    Article  CAS  Google Scholar 

  51. Chapple, C.: Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases, Annu. Rev. Plant Physiol. Plant Mol. Biol 49, 311–343 (1998)

    Article  CAS  Google Scholar 

  52. Ro, D.K., Mah, N., Ellis, B.E., Douglas, C.J.: Functional characterization and subcellular localization of poplar (Populus trichocarpa X Populus deltoids) cinnamate 4-hudroxylase. Plant Physiol. 126, 317–329 (2001)

    Article  CAS  Google Scholar 

  53. Eckardt, N.A.: Probing the mysteries of lignin biosynthesis. The crystal structure of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase provides new insights. Plant Cell 14, 1185–1189 (2002)

    Article  CAS  Google Scholar 

  54. Hatfield, R., Vermerris, W.: Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 126, 1351–1357 (2001)

    Article  CAS  Google Scholar 

  55. Davin, L.B., Lewis, N.G.: Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 123, 453–461 (2000)

    Article  CAS  Google Scholar 

  56. Li, X., Chapple, C.: Understanding lignification: Challenges beyond monolignols biosynthesis. Plant Physiol. 154, 449–452 (2010)

    Article  CAS  Google Scholar 

  57. Glasser W.G., Kelley S.S.: Lignin, in encyclopedia of polymer science and engineering. vol. 8, pp. 795–852. Wiley, Wiley Intersci. Publishing, New York (1987)

    Google Scholar 

  58. Falkehag, S.I.: Lignin in materials. Appl. Polym. Sci 28, 247–257 (1975)

    CAS  Google Scholar 

  59. Freudenberg, K.: Nachtrag zu der Mitteilung über Methylcellulose. Zugleich 6. Mitteilung über Lignin und Celluoses. Liebigs Ann. Chem. 461, 130–131 (1928)

    Article  CAS  Google Scholar 

  60. Campbell, M.M., Sederoff, R.R.: Variation in lignin content and composition. Mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110, 3–13 (1996)

    CAS  Google Scholar 

  61. Boudet, A.M., Lapierre, C., Grima-Pettenati, J.: Biochemistry and molecular biology of lignification. New Phytol. 129, 203–239 (1995)

    Article  CAS  Google Scholar 

  62. Adler, E.: Lignin chemistry—past, present and future. Wood Sci. Technol. 11, 169–218 (1977)

    Article  CAS  Google Scholar 

  63. Ralph J., Hatfield R.D., Grabber J.H., Jung H.G., Quideau S., Helm R.F.: Cell wall crosslinking in grasses by ferrulate and differulate. In: Lewis N.G., Sarkanen S. (eds.) Lignin and Lignan Biosynthesis, pp. 209–236. American Chemical Society, Washington (1998)

    Google Scholar 

  64. Meshitsuka G., Isogai A.: Chemical structure, hemicellulose and lignin. In: Hon D.N.S. (ed.) Chemical Modification of Lignocellulosic Materials, pp. 11–34. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  65. Capanema, E.A., Balaksin, M.Yu., Kadla, J.F.: Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 53, 9639–9649 (2005)

    Article  CAS  Google Scholar 

  66. Karhunen, P., Rummakko, P., Sipilä, J., Brunow, G., Kilpeläinen, I.: Dibenzodioxocins. A novel type of linkage in softwoods lignins. Tetrahedron Lett. 36(1), 167–170 (1995)

    Article  Google Scholar 

  67. Karhunen, P., Rummakko, P., Sipilä, J., Brunow, G., Kilpeläinen, I.: The formation of dibenzodioxocin structures by oxidative coupling. A model for lignin biosynthesis. Tetrahedron Lett. 36(25), 4501–4504 (1995)

    Article  CAS  Google Scholar 

  68. Ralph, J., Lapierre, C., Lu, F., Marita, M.J., van Doorsselaere, J., Boerjan, F., Juanin, L.: NMR evidence for benzodioxane structures resulting from incorporation of 5-hydroxyconiferyl alcohol into lignins of O-methyltransferase-deficient poplars. J. Agric. Food Chem. 49, 86–91 (2001)

    Article  CAS  Google Scholar 

  69. del Río, J.C., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Santos, J.I., Jiménez-Barbero, J.: Highly acetylated (acetylated and or p-coumaroylated) native lignins from diverse herbaceous plants. J. Agric. Food Chem. 56, 9525–9534 (2008)

    Article  CAS  Google Scholar 

  70. Zhang, L., Gellerstedt, G., Ralph, J., Lu, F.: NMR studies on the occurrence of spirodienone structures in lignins. J. Wood Chem. Technol. 26, 65–79 (2006)

    Article  CAS  Google Scholar 

  71. Ammalahti, E., Brunow, G., Bardet, M., Robert, D., Kilpelainen, I.: Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J. Agric. Food Chem. 46, 5113–5117 (1998)

    Article  Google Scholar 

  72. Glasser, W.G., Glasser, H.R.: The evaluation of lignin’s chemical structure by experimental and computer simulation techniques. Pap. Puu 63(2), 71–83 (1981)

    CAS  Google Scholar 

  73. Glasser, W.G., Glasser, H.R., Morohoshi, N.: Simulation of reactions with lignin by computer (SIMREL). 6. Interpretation of primary experimental analysis data. Macromolecules 14, 253–262 (1981)

    Article  CAS  Google Scholar 

  74. Erickson, M., Larsson, L., Miksche, G.E.: Zur Struktur des lignins des Druckholzes von Pinus mugo. Acta Chem. Scand. 27, 1673–1678 (1973)

    Article  CAS  Google Scholar 

  75. Nimz, H.: Beech lignin—proposal of a constitutional scheme. Angew. Chem. Int. Ed. Engl. 13, 313–321 (1974)

    Article  Google Scholar 

  76. Sarkanen K.V., Hergert H.L.: Classification and distribution. In: Sarkanen K.V., Ludwig C.H. (eds.) Lignins. Occurrence, Formation, Structure and Reactions, pp. 43–94. Wiley Interscience, New York (1971)

    Google Scholar 

  77. Yasuda, S., Sakakibara, A.: Hydrogenolysis of protolignin in compression wood. IV. Isolation of a diphenyl ether and three dimeric compounds with carbon to carbon linkage. Mokuzai Gakkaishi 23, 383–387 (1975)

    Google Scholar 

  78. Dence C.W., Lin S.Y.: Introduction. In: Lin S.Y., Dence C.W. (eds.) Methods in Lignin Chemistry, pp. 3–17. Springer, New York (1992)

    Google Scholar 

  79. Pan, D.R., Tai, D.S., Chen, C.L., Robert, D.: Comparative studies on chemical composition of wood components in recent and ancient woods of Bischofia polycarpa. Holzforschung 44, 7–16 (1990)

    Article  CAS  Google Scholar 

  80. Tai, D.S., Chen, C.L., Robert, D.: Comparative studies on chemical composition of wood components in recent and ancient woods of Bischofia polycarpa. Holzforschung 44, 7–16 (1990)

    Article  Google Scholar 

  81. Tai, D.S., Chen, C.L., Gratzl, J.S.: Chemistry of delignification during kraft pulping of bamboos. J. Wood Chem. Technol. 10, 75–99 (1990)

    Article  CAS  Google Scholar 

  82. Robert, D., Brunow, G.: Quantitative estimation of hydroxyl groups in milled wood lignin from spruce and in a dehydrogenation polymer from coniferyl alcohol using 13C-NMR spectroscopy. Holzforschung 38, 85–90 (1984)

    Article  CAS  Google Scholar 

  83. Freudenberg, K.: Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science 148, 595–600 (1965)

    Article  CAS  Google Scholar 

  84. Ludwig C.H., Nist B.J., McCarthy J.L.: Lignin. XII. The high resolution nuclear magnetic resonance spectroscopy of protons in compounds related to lignin. J. Am. Chem. Scand. 86, 1186–1196, (1964)

    Google Scholar 

  85. Simionescu Cr.I., Anton I.: Das chemische studium des lignins aus schilf. Das Papier, 19(4), 150–158, (1965)

    Google Scholar 

  86. Sakakibara, A.: A structural model of softwood lignin. Wood Sci. Technol. 14(2), 89–100 (1980)

    Article  CAS  Google Scholar 

  87. Glasser W.G.: Lignin. In: Casey J.P. (ed.) Pulp and Paper: Chemistry and Chemical Technology, vol. 1, pp. 39–111. Wiley, New York (1980)

    Google Scholar 

  88. Gravitis, J., Erins, P.: Topological and conformational structure and macroscopic behaviour of lignin. J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 421–440 (1983)

    CAS  Google Scholar 

  89. Atalla, R.H.: Raman spectroscopy and Raman microprobe: Valuable new tools for characterizing wood and wood pulp fibers. J. Wood Chem. Technol. 7, 115–131 (1987)

    Article  CAS  Google Scholar 

  90. Atalla R.H. Cellulose and the hemicellulose: patterns for cell wall architecture and the assemble of lignin. In: Proceedings of 8th International Symposium on Wood and Pulping Chem, Helsinki, vol. 1, pp. 77–84. 6–9 June 1995

    Google Scholar 

  91. Forss, K.G., Fremer, K.E.: The nature and reactions of lignin—a new paradigm. Oy Nord Print Ab, Helsinki (2003)

    Google Scholar 

  92. Forss, K.J., Fremer, K.E.: Spruce and birch wood lignins—a comparison. Cell Chem. Technol. 40(9–10), 739–748 (2006)

    CAS  Google Scholar 

  93. Koshijima T., Watanabe T., Yaku F.: Structure and properties of lignin—carbohydrate complex polymer as an amphipathic substance. In: Glasser W.G., Sarkanen S. (eds.) Lignin Properties and materials, pp. 11–28. ACS Symposium Series 397, (1989)

    Google Scholar 

  94. Atalla, R.H., Agarwal, U.P.: Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227, 636–638 (1985)

    Article  CAS  Google Scholar 

  95. Haggin, J.: Ester pulping process avoids use of sulfur compounds. Chem. Eng. News 64(4), 25–26 (1986)

    Article  Google Scholar 

  96. Hatakeyama H., Hatakeyama T.: Lignin structure, properties and applications. In: Abe A., Dušek K., Kobayashi S. (eds.) Biopolymers. Lignin, Proteins, Bioactive Nanocomposites, vol. 232, pp. 1–63. Springer, Berlin, Adv. Polym Sci. (2010)

    Google Scholar 

  97. Goring D.A.I.: Polymer properties of lignin and lignin derivates. In: Sarkanen K.V., Ludwig C.H. (eds.) Lignins. Occurrence, Formation, Structure and Reactions, pp. 695–761. Wiley, New York (1971)

    Google Scholar 

  98. Hatakeyama, T., Hatakeyama, H.: Temperature dependence of X-ray difractograms of amorphous lignins and polystyrenes. Polymer 23, 475–477 (1982)

    Article  CAS  Google Scholar 

  99. Goring D.A.I.: Thermal softening of lignin, hemicelluloses and cellulose. Pulp Paper Mag. Can. 64(12) pp. T-517–T-527. (1963)

    Google Scholar 

  100. Back, E.L., Salmen, N.L.: Glass transitions of wood components hold implications for molding and pulping processes. TAPPI 65(7), 107–110 (1982)

    Google Scholar 

  101. Irvine, G.M.: The glass transitions of lignin and hemicellulose and their measurements by differential thermal analysis. TAPPI 67(5), 118–121 (1984)

    CAS  Google Scholar 

  102. Glasser, W.G., Barnett, C.A., Rials, T.G., Saraf, V.P.: Engineering plastics from lignin. II. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci. 29(5), 1815–1830 (1984)

    Article  CAS  Google Scholar 

  103. Vasile C., Popescu M.C., Stoleriu, Gosselink R.: Thermal characterization of lignins. In: Vasile C., Zaikov G.E. (eds.) New Trends in Natural and Synthetic Polymer Science, pp. 135–163. Nova Science Publisher, Inc. (2006)

    Google Scholar 

  104. Cernătescu-Asandei, A., Andriescu, A., Rozmarin, G.H., Simionescu, C.I.: Conceptii moderne in domeniul fizico-chimiei ligninei. Studii si Cercetari Chimice 22(1), 3–74 (1974)

    Google Scholar 

  105. Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S.: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioengin 102(5), 1368–1376 (2009)

    Article  CAS  Google Scholar 

  106. King, A.W.T., Zoia, L., Filpponene, I., Olssszewska, A., Xie, H., Kilpeläinen, I., Argyropoulos, D.S.: In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using 31P NMR. J. Agric. Food Chem. 57, 8236–8243 (2009)

    Article  CAS  Google Scholar 

  107. Pu, Y., Jiang, N., Ragauskas, A.J.: Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 27, 23–33 (2007)

    Article  CAS  Google Scholar 

  108. Rezanovich, A., Goring, D.A.I.: Polyelectrolyte expansion of a lignin sulgonate microgel. J. Colloid Sci. 15, 452–471 (1960)

    Article  Google Scholar 

  109. Glasser, W.G., Dave, V., Frzier, C.E.: Molecular weight distribution of semi-commercial lignin derivatives. J. Wood Chem. Technol. 13, 545–555 (1993)

    Article  CAS  Google Scholar 

  110. Gupta, P.R., Robertson, R.F., Goring, D.A.I.: Physicochemical studies of alkali lignins. II. Ultracentrifugal sedimentation analysis. Can. J. Chem. 38, 259–270 (1960)

    Article  CAS  Google Scholar 

  111. Pla, F., Robert, A.: Étude du comportement hydrodynamique d’une lignine d’extraction. Cell. Chem. Technol 8, 3–11 (1974)

    CAS  Google Scholar 

  112. Rezanovich, A., Yean, W.Q., Goring, D.A.I.: High-resolution electron microscopy of sodium lignosulfonate. J. Appl. Polym. Sci. 81(4), 1801–1812 (1964)

    Article  Google Scholar 

  113. Connors, W.J., Sarkanen, S., McCarthy, K.L.: Gel chromatography and association complexes of lignin. Holzforschung 34(3), 80–85 (1980)

    Article  CAS  Google Scholar 

  114. Sarkanen, S., Tellers, D.C., Hall, J.L., McCarthy, J.L.: Associative effects among organosolv lignin components. Macromolecules 14, 426–434 (1981)

    Article  CAS  Google Scholar 

  115. Hüttermann, A.: Gel permeation chromatography of water-insoluble lignins on controlled pore glass and sepharose CL-6B. Holzforschung 32, 108–111 (1978)

    Article  Google Scholar 

  116. Dong, D., Fircke, A.L.: Intrinsic viscosity and the molecular weight of kraft lignin. Polym 36, 2075–2078 (1995)

    Article  CAS  Google Scholar 

  117. Forss, K., Kokkonen, R., Sagfors, P.E.: Determination of molecular mass distribution studies of lignins by gel permeation chromatography. In: Glasser, W.G., Sarkanen, S. (eds.) Lignin, Properties and Materials, pp. 124–133. American Chemical Society, Washington (1989)

    Chapter  Google Scholar 

  118. Gellerstedt, G.: Gel permeation chromatography. In: Lin, S.Y., Dence, C.W. (eds.) Methods in Lignin Chemistry, pp. 487–497. Springer, Berlin (1992)

    Chapter  Google Scholar 

  119. Pla, F.: Light scattering methods. In: Lin, S.Y., Dence, C.W. (eds.) Methods in Lignin Chemistry, pp. 498–508. Springer, Berlin (1992)

    Chapter  Google Scholar 

  120. Pla, F.: Vapor pressure osmometry. In: Lin, S.Y., Dence, C.W. (eds.) Methods in Lignin Chemistry, pp. 509–517. Springer, Berlin (1992)

    Chapter  Google Scholar 

  121. Himmel, M.E., Tatsumoto, L., Oh, K.K., Grohmann, K., Johnson, D.K., Chum, J.L.: Determination of a polymerr’s molecular weight distribution by analytical ultracentrifugation. In: Glasser, W.G., Sarkanen, S. (eds.) Lignin: Properties and Materials, pp. 82–99. American Chemical Society, Washington (1989)

    Google Scholar 

  122. Ben-Ghedalia, B., Yosef, E.: Effect of isolation procedure on molecular weight distribution of wheat straw lignins. J. Agric. Food Chem. 42, 649–652 (1994)

    Article  CAS  Google Scholar 

  123. Lindner, A., Wegner, G.: Characterization of lignins from organosolv pulping according to the organocell process. Part 3. Molecular weight determination and investigation of lignins isolated by GPC. J. Wood Chem. Technol. 10, 331–350 (1990)

    Article  CAS  Google Scholar 

  124. Lebo, S.E., Braten, S.M., Fredheim, G.E., Lutnaesf, B.F., Lauten, R.A., Myrvold, B.O., McNally, T.J.: Recent advances in the characterization of lignosulfonate, In: Hu, T.Q. (ed.) Characterization of Lignocellulosic Materials, pp. 188–205. Blackwell, Oxford (2008)

    Google Scholar 

  125. Westermark, U., Gusafsson, K.: Molecular size distribution of wood polymer in birch draft pulps. Holzforschung 48, 146–150 (1994)

    Article  CAS  Google Scholar 

  126. Hattali, S., Benaboura, A., Ham-Pichavant, F., Noumamode, A., Castellan, A.: Adding value to alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins. 1. Lignin characterization. Polym. Degrad. Stab. 75, 259–264 (2002)

    Article  Google Scholar 

  127. Sun, R.C., Tomkinson, J., Wang, S.Q., Zhu, W.: Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym. Degrad. Stabil 67, 101–109 (2000)

    Article  CAS  Google Scholar 

  128. Bidlack, J., Malone, M., Benson, R.: Molecular structure and component integration of secondary cell wall in plants. Proc. Okla Acad. Sci. 72, 51–56 (1992)

    CAS  Google Scholar 

  129. Hauteville, M., Lundquist, K., von Unge, S.: NMR studies of lignins. 7. 1H-NMR spectroscopic investigation of the distribution of erythro and threo forms of β-O-4 structures in lignins. Acta Chem. Scand. B40(1), 31–35 (1986)

    Article  CAS  Google Scholar 

  130. Lundquist, K., Langer, V., Li, S., Stomberg, R.: Lignin stereochemistry and its biosynthetic implications. In: The 12th International Symposium on Wood and Pulping Chemistry, Madison, 9–12 June 2003, pp. 239–244

    Google Scholar 

  131. Langer, V., Lundquist, K., Parkås, J.: The stereochemistry and conformation of lignin as judged by X-ray crystallographic investigations of lignin model compounds: arylglycerol β-guaiacyl ethers. BioResources 2(4), 590–597 (2007)

    CAS  Google Scholar 

  132. Micic, M., Radotic, K., Jeremic, M., Djikanovic, D., Kämmer, S.B.: Study of the lignin model compound supramolecular structure by combination of near-field scaning microscopy and atomic force microscopy. Coll. Surfac. B: Bionterfaces 34, 33–40 (2004)

    Article  CAS  Google Scholar 

  133. Abreu, S.H., Latorraca, V.F.J., Pereira, P.W.R., Moneiro, O.M.B., Abreu, A.F., Amparado, F.K.: A supramolecular proposal of lignin structure and its relation with the wood properties. Ann. Braz. Acad. Sci. 81(1), 137–142 (2009)

    Article  CAS  Google Scholar 

  134. Faulon, J.L., Hatcher, P.G.: Is there any order in the structure of lignin. Energy Fuel 8, 402–407 (1994)

    Article  CAS  Google Scholar 

  135. Kishimoto, T., Uraki, Y., Ubukata, M.: Chemical synthesis of β-O-4 type artificial lignin. Org. Biomol. Chem. 4, 1343–1347 (2006)

    Article  CAS  Google Scholar 

  136. Escudero-Alvarez, E., Gonzàlez-Sànchez, P.: Dietary fibre. Nutri. Hosp 21, 60–71 (2006)

    Google Scholar 

  137. Jung, H.G., Fahey, G.C.: Nutritional implications of phenolic monomers and lignin: a review. J. Anim. Sci. 57, 206–219 (1983)

    CAS  Google Scholar 

  138. Balat, M.: Gasification of biomass to produce gaseous products. Energy Sources, Part A 31, 516–526 (2009)

    Article  CAS  Google Scholar 

  139. Zemek, J., Košiková, B., Augustin, J., Joniak, D.: Antibiotic properties of lignin components. Folia Microbiol. 24, 483–486 (1979)

    Article  CAS  Google Scholar 

  140. Sláviková, E., Košiková, B.: Inhibitory effect of lignin by-products of pulping on yeast growth. Folia Microbiol. 39(3), 241–243 (1994)

    Article  Google Scholar 

  141. Nelson, J.L., Alexander, J.W., Gianotti, L., Chalk, C.L., Pyles, T.: Influence of dietary fiber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10, 32–36 (1994)

    CAS  Google Scholar 

  142. Telysheva, G., Dizhbite, T., Lebedeva, G., Niokolaeva, V.: Lignin products for decontamination of environment objects from pathogenic microorganisms and pollutants. In: The 7th ILI Forum-Barcelona, 27–28 Apr 2005, pp. 71–74

    Google Scholar 

  143. Nada, A.M.A., El-Diwany, A.I., Elshafei, A.M.: Infrared and antimicrobial studies on different lignins. Acta Biotechnol. 9, 295–298 (1989)

    Article  CAS  Google Scholar 

  144. Çekmez, U.: Isolation of antimicrobial molecules from agricultural biomass and utilization in xylan-based biodegradable films, thesis master. Middle East Technical University, USA (2010)

    Google Scholar 

  145. Zilliox, C., Debeire, P.: Hydrolysis of wheat straw by a thermostable endoxylanase. Adsorbtion and kinetic studies, Enzym. Microbial Technol. 22, 58–63 (1998)

    Google Scholar 

  146. Baurhoo, B., Ruiz-Feria, C.A., Zhao, X.: Purified lignin: nutritional and health impacts on farm animals. Anim. Feed Sci. Technol. 144(3), 175–184 (2008)

    Article  CAS  Google Scholar 

  147. Toh, K., Yokoyama, H., Takahashi, C., Watanabe, T., Noda, H.: Effect of herb lignin on the growth of enterobacteria. J. Gen. Appl. Microbiol. 53, 201–205 (2007)

    Article  CAS  Google Scholar 

  148. Dizhbite, T., Telyesheva, G., Jurkjane, V., Viesturs, U.: Characterization of the radical scavenging activity of lignins-natural antioxidants. Bioresour. Technol. 95, 309–317 (2004)

    Article  CAS  Google Scholar 

  149. Lu, F.J., Chu, L.H., Gau, R.J.: Free radical-scavenging properties of lignin. Nutr. Cancer 30, 31–38 (1998)

    Article  CAS  Google Scholar 

  150. Vinardell, M.P., Ugartondo, V., Mitjans, M.: Antioxidant and photoprotective action of lignins from different sources assessed in human red blood cells. In: 7th ILI Forum, Barcelona, 27–28 Apr 2005, pp. 75–77

    Google Scholar 

  151. Ugartondo, V., Mitjans, M., Vinardell, M.P.: Applicabilitz of lignins from different sources as antioxidants based on the protective effects on lipid peroxidation induced bz oxzgen radicals. Ind. Crops Prod. 30, 184–187 (2009)

    Article  CAS  Google Scholar 

  152. Mitjans, M., Garcia, L., Marrero, E., Vinardell, M.P.: Study of ligmed-A, an antidiarrheal drug based on lignin, on rat small intestine enzyme activity and morphometry. J. Vet. Pharmacol. Therap. 24, 349–351 (2001)

    Article  CAS  Google Scholar 

  153. Garcia, L., Abajo, C., del Campo, J., Mitjans, M., Marrero, E., Vinardell, M.P.: Antioxidant effect of ligmed—a on humane erythrocytes in vitro. Pharmacology 3, 514–519 (2006)

    Google Scholar 

  154. Košiková, B., Lábaj, J.: Lignin-stimulated protection of polypropylene films and DNA in cells of mice against oxidation damage. BioResouces 4(2), 805–815 (2009)

    Google Scholar 

  155. Boeriu, C., Bravo, D., Gosselink, R.J.A., van Dam, J.E.G.: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20, 205–218 (2004)

    Article  CAS  Google Scholar 

  156. Kocheva, L.S., Borisenkov, M.F., Karmanov, A.P., Mishurov, V.P., Spirikhin, L.V., Monakov, Zu.B.: Structure and antioxidant characteristics of wheat and oat lignins. Rus. J. Appl. Chem. 78(8), 1343–1350 (2005)

    Article  CAS  Google Scholar 

  157. Pepper, J.M., Baylis, P.E., Adler, E.: The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Can. J. Chem. 37(8), 1241–1245 (1959)

    Article  CAS  Google Scholar 

  158. Barclay, L.R.C., Xi, F., Norris, J.Q.: Antioxidant properties of phenolic lignin model compounds. J. Wood Chem. Technol. 17(1–2), 73–90 (1997)

    Article  CAS  Google Scholar 

  159. Perez-Perez, E.M., Rodriguez-Malaver, A.J., Dumitrieva, N.: Antioxidant activity of lignin from black liquor. In: ILI 7th International Forum, Barcelona, 27–28 Apr 2005, pp. 191–194

    Google Scholar 

  160. Telysheva, G., Dizhbite, T., Tirzite D., Jurjane V.: Applicability of a free radical (DPPH·) method for estimation of antioxidant activity of lignin and its derivatives. 5th International lignin institute, Forum, Commercial outlets for new lignins and definitions of new projects, Bordeaux, France, Proceedings, pp. 153–160. (2000)

    Google Scholar 

  161. Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N.: Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813 (2006)

    Article  CAS  Google Scholar 

  162. Căpraru A.M. Disertation thesis: Contributions on lignin modification by hydroxymethylation and epoxydation reactions GH. Asachi Technical University, Iasi, Romania, (2010)

    Google Scholar 

  163. Gravitis, J.: Lignin structure and properties from the viewpoint of general disordered systems theory. In: Kennedy, J.F., Phillips, G.O., Williams, P.A. (eds.) Lignocellulosic Science, Technology, Development and Use, pp. 613–627. Ellis Horwood, New York (1992)

    Google Scholar 

  164. Radotić, K., Tasić, M., Jeremić, M., Budimlija, Z., Simić-Krstić, J., Bolžović, Z.: Fractal analysis of STM images of lignin polymer obtained by in vitro synthesis. Gen. Physiol. Biophys. 19(2), 171–180 (2000)

    Google Scholar 

  165. Jurasek, L.: Morphology of computer-modeled lignin structures: fractal dimensions, orientation and porosity. J. Pulp Paper Sci 22, J376–J380 (1996)

    Google Scholar 

  166. Vainio, U., Maximova, N., Hortling, B., Laine, J., Stenius, P., Kaarina, S.L., Gravitis, J., Serimaa, R.: Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 20, 9736–9744 (2004)

    Article  CAS  Google Scholar 

  167. Garver, T.M., Callaghan, P.T.: Hydrodynamics of kraft lignins. Macromolecules 24, 420–430 (1991)

    Article  CAS  Google Scholar 

  168. Norgren, M., Lindström, B.: Physico-chemical characterization of a fractionated kraft lignin. Holzforschung 54, 528–534 (2000)

    CAS  Google Scholar 

  169. Cazacu G., Nita L., Pintilie M., Vasile C.: Physico-chemical characterization of lignin. Size lignin particles determination on the Zetasizer nano, COST FP0901 Meeting, Paris, January pp. 25–26. (2011)

    Google Scholar 

  170. Notley, S.M., Norgren, M.: Lignin: Functional biomaterial with potential in surface chemistry and nanoscience. In: Lucia L.A. (ed.) The Nanoscience and Technology of Renewable Biomaterials, pp. 173–206. Blackwell Publishing Ltd., Wiley (2009)

    Google Scholar 

  171. Norgren, M., Edlund, H., Wågberg, L., Lindström, B., Annergreen, G.: Aggregation of kraft lignin derivatives under conditions relevant to the process. Part 1. Phase behaviour. Colloids Surf. A 194, 85–86 (2001)

    Google Scholar 

  172. Norgren, M., Edlund, H., Wågberg, L.: Aggregation of lignin derivatives under alkaline derivatives. Kinetic and aggregate structure. Langmuir 18, 2856–2865 (2002)

    Article  CAS  Google Scholar 

  173. Šćiban, M., Klašnja, M.: Wood sawdust and wood originate materials as adsorbent for heavy metal ions. Holz Roh Verkst 62, 69–73 (2004)

    Article  CAS  Google Scholar 

  174. Goring, D.A.I., Vuong, R., Gancet, C., Chanzy, H.: The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy. J. Appl. Polym. Sci. 24(4), 931–936 (1979)

    Article  CAS  Google Scholar 

  175. Favis, B.D., Goring, D.A.I.: A model for the leaching of lignin macromolecules from pulp fibers. J. Pulp Paper Sci 10(5), J139–J143 (1984)

    Google Scholar 

  176. Yu, E., Dem’yantseva, N.P., Lysogorskaya, V.V., Klyubin, S., Zaitseva, V.: A dynamic light scattering study of the temperature dependence of the size-distribution pattern and aggregation stability of sulfate lignin and wood resin in aqueous alkali solution. Russ. J. Appl. Chem. 75(1), 149–15 (2002)

    Google Scholar 

  177. Bonnikov, S.V., Dem’yantseva, E.Yu.: Particle size distribution of wood resin and sulfate lignin in aqueous alkaline solution. Russ. J. Appl. Chem. 78(3), 492–495, (2005)

    Google Scholar 

  178. Shulga, G., Skudra, S., Shakels, V., Brovkina, J., Belkova, L., Cazacu, G., Vasile, C., Nita, L.: Self-organization of birch lignin and its water solution properties. 11th EWLP, August 16–19, Hamburg, Germany, Proceedings, pp. 577–580. (2010)

    Google Scholar 

  179. Căpraru, A.M., Ungureanu, E., Popa, V.I.: Aspects concerning some biocides systems based on natural aromatic compounds aromatic compounds and their copper complexes. 15th International Symposium on Wood, Fibre and Pulping Chemistry, Oslo, Norway, Proceedings CD 15–18 June, 2009

    Google Scholar 

  180. Măluţan, Th., Nicu, R., Popa, V.I.: Contribution to the study of hydroxymethylation reaction of alkali lignin. Bio/Resources 3(1), 13–20 (2008)

    Google Scholar 

  181. Schilling, P.: Submicron lignin-based binders for water-based black ink formulation. US Patent, 5192361/March 9 1993

    Google Scholar 

  182. Popa, V.I., Căpraru, A.M., Grama, S., Măluţan, T.: Studies concerning the obtaining of nanoparticles with biocides properties based on modified lignins. 3rd International Conference on Advanced Composite Materials Engineering, COMAT, vol. 2, pp. 193–197. Braşov, Proceedings, 27–29 October 2010

    Google Scholar 

  183. Popa, V.I., Măluţan, Th., Nicu, R.: Study of hydroxymethylation reaction of alkali lignin. 8th Forum ILI the ILI umbrella programme and other existing or new approaches in lignin research, pp. 209–212. Rome, Italy, Proceedings, 10–12 May 2007

    Google Scholar 

  184. Ungureanu, E., Căpraru, A.M, Popa, V.I.: Aspects concerning some bioprotection agents based on natural aromatic compounds and their copper complexes. COST 50/ILI Joint meeting, p. 40. Switzerland, Abstracts, 27–29 October 2008

    Google Scholar 

  185. Ungureanu, E., Popa, V.I., Todorciuc, T.: Biocides systems based on natural products with application in protecting the lignocellulose materials. The 7th Romanian-Italian Seminar on Pulp and Paper, Iasi, Romania 6–8 Sept 2007

    Google Scholar 

  186. Ungureanu, E., Ungureanu, O., Căpraru, A.M., Popa, V.I.: Chemical modification and characterization of straw lignin. Cellul. Chem. Technol. 43(7–8), 261–267 (2009)

    Google Scholar 

  187. Yamaguchi, H., Yaoshino, K.: Influence of tannin-copper complexes as preservatives for wood on mechanism of decomposition by brown-rot fungus Fomitopsis palustris. Holzforschung 55(5), 4644–470 (2001)

    Article  Google Scholar 

  188. Kozlowski, R., Zimniewska, M.: Cellulose fibre textiles containing nanolignins, a method of applying nanolignins onto textiles and the use of nanolignins in textile production. International Patent WO 2008/140337 A1, 20.11.2008

    Google Scholar 

  189. Elegir, G., Bussini, D., Antonsson, S., Lindström, Z.L.: Laccase-initiated crosslinking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl. Microbiol. Biotechnol. 77(4), 809–817 (2007)

    Article  CAS  Google Scholar 

  190. Ciolacu, D., Anghel, N., Cazacu, G.: Enzymatic degradation of the hydrogels based on poly(vinyl alcohol) and lignin. Workshop of the COST ActioBioBIO (FP0602), Varenna (Lecco) Italy 2–4 Sept, 2009

    Google Scholar 

  191. Ciolacu, D., Darie, R.N., Cazacu, G.: Polymeric systems based on lignin—poly(vinyl alcohol). In: Totolin, M., Cazacu G., (eds.) Binders, Composites and Other Applications Based on Lignins, pp. 170–194. MPIM Publising, Iasi, ISBN 606-520-740-3, (2010)

    Google Scholar 

  192. Darie, R.N., Cazacu, G., Vasile, C.: Melt processing and physico-chemical characterisation of some synthetic polymer (PVA)/natural polymer (lignin) systems. Iasi academic days, Progress in organic and polymer chemistry, 22nd edn. Iasi, 8–10 Oct, 2009

    Google Scholar 

  193. Chen, P., Zhang, L., Peng, S., Liao, B.: Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J. Appl. Polym. Sci. 101(1), 334–341 (2006)

    Article  CAS  Google Scholar 

  194. Baumberger, S., Lapierre, C., Monties, B.: Utilization of pine kraft lignin in starch composites: Impact of structural heterogeneity. J. Agric. Food Chem. 46, 2234–2240 (1998)

    Article  CAS  Google Scholar 

  195. Baumberger, S., Lapierre, C., Monties, B., Della, V.G.: Use of kraft lignin as filler for starch films. Polym. Degrad. Stab. 59, 273–277, (1998)

    Google Scholar 

  196. Stevens, E.S., Willett, J.L., Shogren, R.L.: Thermoplastic starch—kraft lignin—glycerol blends. J. Biobased Mat. Bioen 1(3), 351–359 (2007)

    Article  Google Scholar 

  197. Wu, R.L., Wang, X.L., Li, F., Li, H.Z., Wang, Y.Z.: Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technol. 100, 2569–2574, (2009)

    Google Scholar 

  198. Sánchez, C.G., Espósito Alvarez, L.A.: Micromechanics of lignin/polypropylene composites suitable for industrial application. Angew. Makromol. Chem. 272 (nr. 4758), 65–70, (1999)

    Google Scholar 

  199. Mikulàšová, M., Košíková, B.: Biodegradability of lignin-polypropylene composite films. Folia Microbiol. 44(6), 669–672 (1999)

    Article  Google Scholar 

  200. Pouteau, C., Dole, P., Cathala, B., Averous, L., Boquillon, N.: Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stab. 81, 9–18 (2003)

    Article  CAS  Google Scholar 

  201. Gregorová, A., Cibulková, Y., Košiková, B., Šimon, P.: Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 89, 553–558 (2005)

    Article  CAS  Google Scholar 

  202. Košiková, B., Rvajová, A., Demianová, V.: The effect of adding lignin on modification of surface properties of polypropylene. Eur. Polym. J 31, 953–956 (1995)

    Article  Google Scholar 

  203. Darie, R., Cazacu, G., Vasile, C., Kozlowski, M.: Blends with polypropylene matrix and lignin additive. Italic 4, Science and Technology of Biomass: Advances and Challenges, Monte Porzio catone, pp. 215–218. Rome, Italy, Proceedings, 8–10 May, 2007

    Google Scholar 

  204. Darie, R.N., Vasile, C., Cazacu, G., Kozlowski, M.: Effect of lignin incorporation on some physico-mechanical properties of blends containing synthetic polymers. 7th International Conference APT 2007 Advances in Plastics Technology, Katowice, Poland 12–15 Nov, 2007

    Google Scholar 

  205. Bozell, J.J., Holladay, J.E., Johnson, D., White, J.F.: Top value-added chemicals from biomass. Vol II—Results of screening for potential candidates from biorefinery, 2007 http://www1.pnl.gov/main/publications/external/technical_reports/PNNL-16983.pdf

  206. Li, Y., Sarkanen, S.: Thermoplastics with very high lignin contents. In: Glasser, W.G., Northey, R.A., Schultz, T.P. (eds.) Lignin: Historical, Biological and Materials Perspectives, pp. 351–366.ACS Symposium Series 742, Am. Chem. Soc. Washington (1999)

    Google Scholar 

  207. Calvo-Flores, F.G., Dobado, J.A.: Lignin as renewable raw material. ChemSusChem 3(33), 1227–1235 (2010)

    Article  CAS  Google Scholar 

  208. Pye, E.K.: Industrial lignin production and applications. In: Kamm, B., Gruber, P.R., Kamm M., (eds.) Biorefineries—Industrial Processes and Products. Status Quo and Future Directions, vol. 2, pp. 165–200. Wiley-VCH Verlag Gmbh & Co KGaA, Weinheim, ISBN 3-527-31027-4, (2006)

    Google Scholar 

  209. Stewart, D.: Lignin as a base material for materials applications. Chemistry, application and economics. Ind. Crops Prod. 27, 202–207 (2008)

    Article  CAS  Google Scholar 

  210. Cazacu, G., Pascu, M.C., Profire, L., Vasile, C.: Environmental friendly polymer materials. I. Polyolefins-lignin based materials. Environ. Prot. Ecol. 3(1), 242–248 (2002)

    CAS  Google Scholar 

  211. Cazacu, G., Pascu, M.C., Profire, L., Kowarski, A.I., Mihăeş, M., Vasile, C.: Lignin role in a complex polyolefin blend. Ind. Crops Prod. 20, 261–273 (2004)

    Article  CAS  Google Scholar 

  212. Cazacu, G., Mihaeş, M., Pascu, M.C., Profire, L., Kowarski, A.I., Vasile, C.: Polyolefin/lignosulfonate blends. IX. Functionalized polyolefins/lignin blends. Macromol. Mat. Engin. 289(10), 880–889, (2004)

    Google Scholar 

  213. Kleinert, M., Barth, T.: Phenols from lignin. Chem. Eng. Technol. 31(5), 736–745 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin I. Popa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cazacu, G., Capraru, M., Popa, V.I. (2013). Advances Concerning Lignin Utilization in New Materials. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_8

Download citation

Publish with us

Policies and ethics