Advertisement

A Fast and Simple Scheme for Mobile Station-Controlled Handover in Mobile WiMAX

  • Sayan Kumar Ray
  • Swapan Kumar Ray
  • Krzysztof Pawlikowski
  • Allan McInnes
  • Harsha Sirisena
Conference paper
  • 413 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 63)

Abstract

A Mobile Station (MS)-controlled fast and simple scheme of handover (HO) in Mobile WiMAX network has been described. An MS can roughly estimate its present distance from any neighbouring Base Stations (BS) using the Received Signal Strength (RSS) and an appropriate pathloss formula. From the Mobile Neighbor Advertisement (MOB_NBR-ADV) broadcasts, the MS periodically monitors the RSS of its Serving BS (SBS), chooses the appropriate times to perform few scanning of selected Neighbouring BSs (NBS) and estimates their changing distances to compute their respective angles of divergence from its own line of motion. The MS selects the NBS having the minimum angle of divergence (AOD), coupled with satisfactory quality of service and bandwidth capability, as its Target BS (TBS) and requests the SBS for executing this HO. Simulation studies show fairly reduced HO latency. MS-controlled HO promises greatly increased scalability for the Mobile WiMAX network.

Keywords

Handover in Mobile WiMAX MS-controlled fast handover distance estimation and lookahead handover MS self-tracking scalability improvement in Mobile WiMAX Angle of Divergence RSS-based Distance Estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE 802.16e-2005: IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access SystemsGoogle Scholar
  2. 2.
    WiMAX Forum White Paper: Mobile WiMAX-Part I: A Technical Overview and Performance Evaluation (August 2006)Google Scholar
  3. 3.
    Ray, S.K., Ray, S.K., Pawlikowski, K., McInnes, A., Sirisena, H.: Self-Tracking Mobile Station Controls Its Fast Handover in Mobile WiMAX. In: IEEE Wireless Communications and Networking Conference, pp. 1–6. IEEE Press, Sydney (2010)Google Scholar
  4. 4.
    Ray, S.K., Kumar, J., Sen, S., Nath, J.: Modified distance vector routing scheme for a MANET. In: The National Conference on Communications, Kanpur, pp. 197–202 (2007)Google Scholar
  5. 5.
    Ray, S.K., Pawlikowski, K., Sirisena, H.: Handover in Mobile WiMAX Networks: The State of Art and Research Issues. J. IEEE Communications Surveys and Tutorials Mag., 376–399 (August 2010)Google Scholar
  6. 6.
    Ray, S.K., Pawlikowski, K., Sirisena, H.: A Fast MAC-layer handover for an IEEE 802.16e-based WMAN. In: Wang, C. (ed.) AccessNets 2008. LNCS, vol. 6, pp. 102–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Boukerche, A., Zhang, Z., Pazzi, R.W.: Reducing Handoff Latency for WiMAX Networks using Mobility Patterns. In: IEEE Wireless Communications and Networking Conference. IEEE Press, Sydney (2010)Google Scholar
  8. 8.
    Rouil, R., Golmie, N.: Adaptive Channel Scanning for IEEE 802.16e. In: IEEE Military Communications Conference, pp. 1–6. IEEE Press, Washington (2006)Google Scholar
  9. 9.
    Daniel, K., Rohde, S., Subik, S., Wietfeld, C.: Performance Evaluation for Mobile WiMAX Handover with a Continuous Scanning Algorithm. In: IEEE Mobile WiMAX Symposium, pp. 30–35. IEEE Press, California (2009)Google Scholar
  10. 10.
    Choi, S., Hwang, G.-H., Kwon, T., Lim, A.R., Cho, D.H.: Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system. In: IEEE Vehicular Technology Conference, pp. 2028–2032. IEEE Press, Stockholm (2005)Google Scholar
  11. 11.
    Jiao, W., Jiang, P., Ma, Y.: Fast handover scheme for real-time applications in Mobile WiMAX. In: IEEE International Conference on Communications, pp. 6038–6042. IEEE Press, Glasgow (2007)Google Scholar
  12. 12.
    Anh, N.H., Kawai, M.: An Adaptive Mobility Handoff Scheme for Mobile WiMAX Networks. In: International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, pp. 827–831 (2009)Google Scholar
  13. 13.
    Choi, Y.-H.: Mobility management of IEEE 802.16e networks. Intl. J. of Comp. Sc. and Net. Sec., 89–93 (February 2008)Google Scholar
  14. 14.
    Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamentals of WiMAX. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  15. 15.
    Bshara, M., Deblauwe, N., Biesen, L.V.: Localization in WiMAX networks based on signal strength observations. In: IEEE Global Communications Conference. IEEE Press, New Orleans (2008)Google Scholar
  16. 16.
    Venkatachalam, M., Etemad, K., Ballantyne, W., Chen, B.: Localization Services in WiMAX Networks. IEEE Comms Mag., 92–98 (October 2009)Google Scholar
  17. 17.
    Scalable Network Technologies, http://www.scalable-networks.com
  18. 18.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for Ad-Hoc network research. J. Wireless Communications and Mobile Computing, 483–502 (September 2002)Google Scholar
  19. 19.
    WiMAX Forum Mobile System Profile: Release 1.0 Approved System Specification, WiMAX Forum Working GroupGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2011

Authors and Affiliations

  • Sayan Kumar Ray
    • 1
  • Swapan Kumar Ray
    • 2
  • Krzysztof Pawlikowski
    • 1
  • Allan McInnes
    • 3
  • Harsha Sirisena
    • 3
  1. 1.Department of Computer Science and Software EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  3. 3.Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations