Skip to main content

Bio-Medical Applications of Elastomeric Blends, Composites

  • Chapter
  • First Online:
Advances in Elastomers II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 12))

Abstract

Elastomeric blends and composites are now extensively used for biomedical applications. Some of these applications include medical devices and utilities such as blood bags and cardiac assist pumps, and chronic medical implants such as heart valves and vascular grafts. These materials demonstrate superior biocompatibility, biostability and good mechanical properties, and as a result are now preferred over the use of metals and ceramics in most chronic medical implants applications. In addition, the chemical composition of these elastomeric blends and composites offers substantial opportunities for synthetic polymer chemists to tailor the structures to meet specific requirements. The current chapter discusses some of the recent developments in the use of elastomeric blends and composites for biomedical applications. The chapter also discusses the essential properties that materials used in these applications should possess in order to reduce the risk of severe allergic reactions in patients, implants being rejected by the host environment and premature failure of device and/or implants. An overview of the commonly used elastomer based products in biomedical applications and their fabrication/synthesis techniques is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogolewski, S.: In vitro and in vivo molecular stability of medical polyurethanes: A review. Trends Polym. Sci. 1, 47–61 (1991)

    Google Scholar 

  2. Christenson, E.M., Wiggins, M.J., Anderson, J.M., Hiltner, A.: Surface modification of poly(ether urethane urea with modified dehydroepiandros-terone for improved in vivo biostability). J. Biomed. Mater. Res. 73A, 108–115 (2005)

    Article  CAS  Google Scholar 

  3. Lelah, M.D., Cooper, S.L.: Polyurethanes in medicine. CRC Press, Boca Raton (1986)

    Google Scholar 

  4. Szycher, M.: Polyurethanes in vascular grafts. Elastomer World 218, p44 (1998)

    Google Scholar 

  5. Szycher, M., Reed, A.: Biostable polyurethane elastomers. Med. Device Technol. 3, 42–51 (1992)

    CAS  Google Scholar 

  6. Stokes, K., McVenes, R.: Polyurethane elastomer biostability. J. Biomater. Appl. 9, 321–354 (1995)

    CAS  Google Scholar 

  7. Gunatillake, P.A., Martin, D.J., Meijs, G.F., et al.: Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 56, 545–557 (2003)

    Article  CAS  Google Scholar 

  8. Ripple, W.S., Simons, J.: Thermoplastic elastomers in medical devices. Technical contribution for MedPlast Supplement (2007)

    Google Scholar 

  9. Khorasani, M.T., Zaghiyan, M., Mirzadeh, H.: Ultra high molecular weight polyethylene and polydimethylsiloxane blend as acetabular cup material. Colloids Surf. B 41, 169–174 (2005)

    Article  CAS  Google Scholar 

  10. Onatea, J.I., Cominb, M., Bracerasa, I., et al.: Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surf. Coat. Technol. 142–144, 1056–1062 (2001)

    Article  Google Scholar 

  11. Brandon, H.J., Young, V.L., Jerina, K.L., et al.: Variability in the properties of silicone gel breast implants. Plast. Reconstr. Surg. 108(3), 647–655 (2001)

    Article  CAS  Google Scholar 

  12. Koo, N.: The fabrication of a flexible mold for high resolution soft ultraviolet nano-imprint lithography. Nanotechnology 19, 1–4 (2008)

    Google Scholar 

  13. Barr, S., Bayat A.: Current implant surface technology: An examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. Eplasty 9, e22 (2009)

    Google Scholar 

  14. Barr, S., Hill, E., Bayat, A.: Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies. Eplasty 10, 246–268 (2010)

    Google Scholar 

  15. Shanshan L., Daniel, M.D., Yi, C., et al.: Designed biomaterials to mimic the mechanical properties of muscles. Nature 465(7294), 69–73 (2010)

    Google Scholar 

  16. Lysaght, M.J., O’Loughlin, J.A.: Demographic scope and economic magnitude of contemporary organ replacement therapies. ASAIO J. 46(5), 515–521 (2000)

    Article  CAS  Google Scholar 

  17. Ratner, B.D.: An introduction to biomaterials. University of Washing-ton Engineered Biomaterials. http://www.uweb.engr.washington.edu/research/tutorials

  18. Bettinger, C.J.: Biodegradable elastomers for tissue engineering and cell biomaterial interactions. Macromol. Biosci. (2011). doi:10.1002/mabi.201000397

    Google Scholar 

  19. Kurtz Steven, M.: UHMWPE Biomaterials Handbook-Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices (2nd edn), Elsevier, pp. 543 (2009) SBN: 978-0-12-374721-1

    Google Scholar 

  20. Tilak M.S.: Dip molding of polyurethane and silicone for latex-free, nonallergic products. Medical device and diagnostic Industry (2001)

    Google Scholar 

  21. Kanyanta, V., Ivankovic, A.: Mechanical characterisation of polyurethane elastomer for biomedical applications. J. Mech. Behav. Biomater. 3, 51–62 (2010)

    Article  Google Scholar 

  22. Colas, A., Curtis, J.: Biomaterials science. High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, Elsevier (2009)

    Google Scholar 

  23. Kanyanta, V.: Towards early diagnosis of atherosclerosis -accurate prediction of wall shear stress. PhD thesis, University College Dublin, Ireland (2009)

    Google Scholar 

  24. Kang, J., Erdodi, G., Brendel, M.C., et al.: Polyisobutylene-based polyurethanes. v. oxidative-hydrolytic stability and biocompatibility. J. Polym. Sci. Part A: Polym. Chem. 48(10), 2194–2203 (2010)

    Article  CAS  Google Scholar 

  25. Dibra, A., Kastrati, A., Mehilli, J., et al.: Paclitaxel-eluting or sirolimus-eluting stents to prevent restenosis in diabetic patients. N. Engl. J. Med. 353, 663–670 (2005)

    Article  CAS  Google Scholar 

  26. Holvoet, S., Chevallier, P., Turgeon, S., Mantovani, D.: Toward high-performance coatings for biomedical devices: Study on plasma-deposited fluorocarbon films and ageing in pbs. Materials 3, 1515–1532 (2010)

    Article  CAS  Google Scholar 

  27. Nwankire, C.E., Ardhaoui, M., Dowling, D.P.: The effect of plasma-polymerised silicon hydride-rich polyhydrogenmethylsiloxane on the adhesion of silicone elastomers. Polym. Int. 58(9), 996–1001 (2009)

    Article  CAS  Google Scholar 

  28. Nwankire, C.E., ONeill, L., Byrne, G., Dowling, D.P.: The effect of plasma polymerised si-h rich polymethylhydrogen siloxane (phms) on the adhesion of silicone elastomer. In: Proceedings of the 31st Annual Meeting of the Adhesion Society, pp. 436 (2008)

    Google Scholar 

  29. Ademovic, Z., Wei, J., Winther-Jensen, B., Hou, X., Kingshott, P.: Surface modification of pet films using pulsed ac plasma polymerisation aimed at preventing protein adsorption. Plasma Process. Polym. 2, 5363 (2005)

    Article  Google Scholar 

  30. Knoerr, K., HHomann, U.: Millable Polyurethane Elastomers, Hand-book of Elastomers, 2nd edn. Marcel Decker, Inc., New York (2001)

    Google Scholar 

  31. Recker, K.: Cast Polyurethane Elastomers, Handbook of Elastomers, 2nd edn. Marcel Decker, Inc., New York (2001)

    Google Scholar 

  32. Boretos, J.W., Pierce, S.W.: Segmented polyurethane: A new elastomer for biomedical applications. Science 158, 1481–1482 (1967)

    Article  CAS  Google Scholar 

  33. Lamba, N.M.K., Woodhouse, K.A., Cooper, S.L.: Polyurethanes in Biomedical Applications. CRC Press, Boca Raton (1997)

    Google Scholar 

  34. Lakshmi, P.D., Helene, A.S., Philippe, S., Ajit, P.Y.: Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2), 225–237 (2009)

    Article  Google Scholar 

  35. Bloomfield, P.: Choice of heart valve prosthesis. Heart 87(6), 583–589 (2002)

    Article  Google Scholar 

  36. Wiggins, M.J., Anderson, J.M., Hiltner, A.: Effect of strain and strain rate on fatique-accelerated biodegradation of polyurethane. Biomed. Mater. Res. 66A, 463–475 (2003)

    Article  CAS  Google Scholar 

  37. Kurtz S.M.: The UHMWPE Handbook. Academic Press, New York (2004)

    Google Scholar 

  38. Teoh, S.H., Tang, Z.G., Ramakrishna, S.: Development of thin elastomeric composite membranes for biomedical applications. J. Mater. Sci. Mater. Med. 10(6), 343–352 (1999)

    Article  CAS  Google Scholar 

  39. Noll, W.: Chemistry and Technology of Silicones. Academic Press, New York (1968)

    Google Scholar 

  40. Harmand, M.F., Briquet, F.: In-vitro comparative evaluation under static conditions of the hemocompatibility of four types of tubing of cardiopulmonary bypass. Biomaterials 20(17), 1561 (1999)

    Article  CAS  Google Scholar 

  41. Cronin, T.D., Gerow, F.J.: Augmentation mammaplasty: A new

    Google Scholar 

  42. John, L., Foster, R.: Biosynthesis, properties and potential of natural-synthetic hybrids of polyhydroxyalkanoates and polyethylene glycols. Appl. Microbiol. Biotechnol. 75, 1241–1247 (2007)

    Article  Google Scholar 

  43. Nijst, C.L., Bruggeman, J.P., Karp, J.M., Ferreira, L., Zumbuehl, A., et al.: Synthesis and characterization of photocurable elastomers from poly(glycerol-cosebacate). Biomacromolecules 8, 3067–3073 (2007)

    Article  CAS  Google Scholar 

  44. Bettingera, C.J., Bruggemanb, P., Borensteinc, J.T., Langerb, R.S.: Amino alcohol-based degradable poly(ester amide) elas-tomers. Biomaterials 29(15), 2315–2325 (2008)

    Google Scholar 

  45. Barrett, D.G., Luo, W., Yousaf, M.N.: Aliphatic polyester elastomers derived from erythritol and α, ω-diacids. Polym. Chem. 1, 296–302 (2010)

    Article  CAS  Google Scholar 

  46. Cui, W., Zhou, Y., Chang, J.: Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 11 (2010). doi:10.1088/1468-6996/11/1/014108

  47. Liua, X., Wona, Y., Ma, P.: Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaf-folds for tissue engineering. Biomaterials 27(21), 3980–3987 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Kanyanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanyanta, V., Ivankovic, A., Murphy, N. (2013). Bio-Medical Applications of Elastomeric Blends, Composites. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers II. Advanced Structured Materials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20928-4_8

Download citation

Publish with us

Policies and ethics