Advertisement

Fully Green Elastomer Composites

  • Daniel PasquiniEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 12)

Abstract

In this chapter we will discuss the preparation of fully green elastomer composites. First we will define the term green and when we can classify a material as a green. Then we will discuss the alternatives for the replacement of major components of composite materials, viz. filler and matrix, which are usually derived from non-renewable and synthetic materials, with materials from renewable sources. Finally we will describe some work in which fully green elastomer composites were studied.

Keywords

Natural Rubber Renewable Resource Hard Segment Renewable Source Soft Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schwartz, M.M.: Composite Materials Handbook, p. 764. McGraw-Hill, New York (1991) Google Scholar
  2. 2.
    Bledzki, A.K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999)CrossRefGoogle Scholar
  3. 3.
    Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hugues, M., Hill, C., Rials, T.G., Wild, P.M.: Review: current international research into cellulosic fibres and composites. J. Mat. Sci. 36, 2107–2131 (2001)CrossRefGoogle Scholar
  4. 4.
    Woodhams, R.T., Thomas, G., Rodges, D.K.: Wood fibers as reinforcing fillers for polyolefins. Polym. Eng. Sci. 24, 1166–1171 (1984)CrossRefGoogle Scholar
  5. 5.
    Kokta, B.V., Raj, R.G., Daneault, C.: Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym. Plast. Technol. Eng. 28, 247–259 (1989)CrossRefGoogle Scholar
  6. 6.
    Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612–626 (2005)Google Scholar
  7. 7.
    Dufresne, A.: Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J. Nanosci. Nanotechnol. 6, 322–330 (2006)Google Scholar
  8. 8.
    John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)CrossRefGoogle Scholar
  9. 9.
    Dufresne, A.: Cellulose-based composites and nanocomposites. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 401–418. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  10. 10.
    Neagu, R.C., Gamstedt, E.K., Berthold, F.: Stiffness contribution of various wood fibers to composite materials. J. Compos. Mat. 40, 663–669 (2006)CrossRefGoogle Scholar
  11. 11.
    Mohanty, A.K., Misra, M., Drzal, L.T.: Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Kubo, S., Yoshida, T., Kadla, J.F.: Surface porosity of lignin/PP blend carbon fibers. J. Wood Chem. Technol. 27, 257–271 (2007)CrossRefGoogle Scholar
  13. 13.
    Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W.: Lignin-based carbon fibers for composite fiber applications. Carbon 40, 2913–2920 (2002)CrossRefGoogle Scholar
  14. 14.
    Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., Dufresne, A.: Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5, 1545–1551 (2004)CrossRefGoogle Scholar
  15. 15.
    Hill, C.A.S.: Wood Modification: Chemical, Thermal and Other Processes, p. 239. Wiley, Chichester (2006)CrossRefGoogle Scholar
  16. 16.
    Belgacem, M.N., Gandini, A.: Chemical modification of wood. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 419–431. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  17. 17.
    Ly, B., Belgacem, M.N., Bras, J., Salon, M.C.B.: Grafting of cellulose by fluorine-bearing silane coupling agents. Mat. Sci. Eng. 30, 343–347 (2009)Google Scholar
  18. 18.
    Pasquini, D., Belgacem, M.N., Gandini, A., Curvelo, A.A.S.: Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J. Colloid Interface Sci. 295, 79–83 (2006)CrossRefGoogle Scholar
  19. 19.
    Shafrin, E.G.: Critical surface tensions of polymers. In: Brandrup, J., Immergut, E.H. (eds.) Polymer Handbook, 2nd edn, p. III:221–228. Wiley-Interscience, New York (1975)Google Scholar
  20. 20.
    Falsafi, A., Mangipudi, S., Owen, M.J.: Surface and interfacial properties. In: Mark, J.E (ed.) Physical Properties of Polymers Handbook, 2nd edn, p. 1011–1020. Springer, New York (1900)Google Scholar
  21. 21.
    Cunha, A.G., Gandini, A.: Turning polysaccharides into hydrophobic materials: a critical review. Part 1–cellulose. Cellulose 17, 875–889 (2010)CrossRefGoogle Scholar
  22. 22.
    Cunha, A.G., Gandini, A.: Turning polysaccharides into hydrophobic materials: a critical review. Part 2–hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17, 1045–1065 (2010)CrossRefGoogle Scholar
  23. 23.
    Pasquini, D., Teixeira, E.M., Curvelo, A.A.S., Belgacem, M.N., Dufresne, A.: Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 68, 193–201 (2008)CrossRefGoogle Scholar
  24. 24.
    Namazi, H., Dadkhah, A.: Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr. Polym. 79, 731–737 (2010)CrossRefGoogle Scholar
  25. 25.
    Thielemans, W., Belgacem, M.N., Dufresne, A.: Starch nanocrystals with large chain surface modifications. Langmuir 22, 4804–4810 (2006)CrossRefGoogle Scholar
  26. 26.
    Feng, L., Zhou, Z., Dufresne, A., Huang, J., Wei, M., An, L.: Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J. Appl. Polym. Sci. 112, 2830–2837 (2009)CrossRefGoogle Scholar
  27. 27.
    Berlioz, S., Molina-Boisseau, S., Nishiyama, Y., Heux, L.: Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10, 2144–2151 (2009)CrossRefGoogle Scholar
  28. 28.
    Hofmann, W.: Rubber Technology Handbook, p. p. 651. Hanser, New York (1989)Google Scholar
  29. 29.
    Harper, C.A.: Handbook of Plastics, Elastomers, and Composites. McGraw-Hill, New York (1996)Google Scholar
  30. 30.
    Belgacem, M.N., Gandini, A. (eds.): Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam (2008). p. 553Google Scholar
  31. 31.
    Li, F.K., Larock, R.C.: Synthesis, structure and properties of new tung oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. Biomacromolecules 4, 1018–1025 (2003)CrossRefGoogle Scholar
  32. 32.
    Kundu, P.P., Larock, R.C.: Novel conjugated linseed oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. 1. Effect of monomer concentration on the structure and properties. Biomacromolecules 6, 797–806 (2005)CrossRefGoogle Scholar
  33. 33.
    Andjelkovic, D.D., Larock, R.C.: Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization. Biomacromolecules 7, 927–936 (2006)CrossRefGoogle Scholar
  34. 34.
    Badrinarayanan, P., Lu, Y.S., Larock, R.C., Kessler, M.R.: Cure characterization of soybean oil-styrene-divinylbenzene thermosetting copolymers. J. Appl. Polym. Sci. 113, 1042–1049 (2009)CrossRefGoogle Scholar
  35. 35.
    Li, F.K., Hasjim, J., Larock, R.C.: Synthesis, structure, and thermophysical and mechanical properties of new polymers prepared by the cationic copolymerization of corn oil, styrene, and divinylbenzene. J. Appl. Polym. Sci. 90, 1830–1838 (2003)CrossRefGoogle Scholar
  36. 36.
    Marks, D.W., Li, F.K., Pacha, C.M., Larock, R.C.: Synthesis of thermoset plastics by Lewis acid initiated copolymerization of fish oil ethyl esters and alkenes. J. Appl. Polym. Sci. 81, 2001–2012 (2001)CrossRefGoogle Scholar
  37. 37.
    Andjelkovic, D.D., Valverde, M., Henna, P., Li, F.K., Larock, R.C.: Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure-property relationships. Polymer 46, 9674–9685 (2005)CrossRefGoogle Scholar
  38. 38.
    Xia, Y., Larock, R.C.: Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51, 2508–2514 (2010)CrossRefGoogle Scholar
  39. 39.
    Li, F., Hanson, M.V., Larock, R.C.: Soybean oil-divinylbenzene thermosetting polymers: synthesis, structure, properties and their relationships. Polymer 42, 1567–1579 (2001)CrossRefGoogle Scholar
  40. 40.
    Avérous, L.: Biodegradable multiphase systems based on plasticized starch: a review. J. Macromol. Sci. Part C Polym. Rev. C44, 231–274 (2004)Google Scholar
  41. 41.
    Wang, X.L., Yang, K.K., Wang, Y.Z.: Properties of starch blends with biodegradable polymers. J. Macromol. Sci. Part C Polym. Rev. C43, 385–409 (2003)Google Scholar
  42. 42.
    Amass, W., Amass, A., Tighe, B.: A review of biodegradable polymers: uses, current development in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polyesters and recent advances in biodegradable studies. Polym. Int. 47, 89–144 (1998)CrossRefGoogle Scholar
  43. 43.
    Yu, L., Dean, K., Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 502–576 (2006)CrossRefGoogle Scholar
  44. 44.
    Arvanitoyannis, I., Kolokuris, I., Nakayama, A., Aiba, S.: Preparation and study of novel biodegradable blends based on gelatinized starch and 1,4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications. Carbohydr. Polym. 34, 291–302 (1997)CrossRefGoogle Scholar
  45. 45.
    Rouilly, A., Rigal, L., Gilbert, R.G.: Synthesis and properties of composites of starch and chemically modified natural rubber. Polymer 45, 7813–7820 (2004)CrossRefGoogle Scholar
  46. 46.
    Carvalho, A.J.F., Job, A.E., Alves, N., Curvelo, A.A.S., Gandini, A.: Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)CrossRefGoogle Scholar
  47. 47.
    Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2002)CrossRefGoogle Scholar
  48. 48.
    Sodergard, A., Stolt, M.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)CrossRefGoogle Scholar
  49. 49.
    Lenz, R., Marchessault, R.H.: Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6, 1–8 (2005)CrossRefGoogle Scholar
  50. 50.
    Muller, H.M., Seebach, D.: Poly(hydroxyalkanoates)—a 5th class of physiologically important organic biopolymers. Angew. Chem. 32, 477–502 (1993)CrossRefGoogle Scholar
  51. 51.
    Martin, O., Avérous, L.: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42, 6237–6247 (2001)Google Scholar
  52. 52.
    Sudesh, K., Abe, H., Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)Google Scholar
  53. 53.
    Impallomeni, G., Giuffrida, M., Barbuzzi, T., Musumarra, G., Ballistreri, A.: Acid catalyzed transesterification as a route to poly(3-hydroxybutyrate-co-ε-caprolactone) copolymers from their homopolymers. Biomacromolecules 3, 835–840 (2002)CrossRefGoogle Scholar
  54. 54.
    Osborne, T.B.: The Vegetable Proteins, p. 154. Longmans Green and Company, London (1924)Google Scholar
  55. 55.
    Kumar, R., Liu, D., Zhang, L.: Advances in proteinous biomaterials. J. Biobased Mat. Bioenergy 2, 1–24 (2008)CrossRefGoogle Scholar
  56. 56.
    Lieberman, E.R., Gilbert, S.G.: Gas permeation of collagen films as affected by crosslinkage, moisture, and plasticizer content. J. Polym. Sci. Part C Polym. Symp. 41, 33–43 (1973)Google Scholar
  57. 57.
    Cuq, B., Gontard, N., Cuq, J.L., Guilbert, S.: Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agric. Food Chem. 45, 622–626 (1997)CrossRefGoogle Scholar
  58. 58.
    Liu, D., Zhang, L.: Structure and properties of soy protein plastics plasticized with acetamide. Macromol. Mat. Eng. 291, 820–828 (2006)CrossRefGoogle Scholar
  59. 59.
    Chen, P., Zhang, L.: New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol. Biosci. 5, 237–245 (2005)CrossRefGoogle Scholar
  60. 60.
    Graiver, D., Waikul, L.H., Berger, C., Narayan, R.: Biodegradable soy protein-polyester blends by reactive extrusion process. J. Appl. Polym. Sci. 92, 3231–3239 (2004)CrossRefGoogle Scholar
  61. 61.
    Zhou, Q., Zhang, L., Zhang, M., Wang, B., Wang, S.: Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane. Polymer 44, 1733–1739 (2003)CrossRefGoogle Scholar
  62. 62.
    Yoshioka, M., Hagiwara, N., Shiraishi, N.: Thermoplasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6, 193–212 (1999)CrossRefGoogle Scholar
  63. 63.
    Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A., Sheikh, M.A.: Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)CrossRefGoogle Scholar
  64. 64.
    Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh. Chem/Chem. Monthly 141, 653–659 (2010)CrossRefGoogle Scholar
  65. 65.
    Rao, V., Johns, J.: Thermal behavior of chitosan/natural rubber latex blends: TG and DSC analysis. J. Therm. Anal. Calorim. 92, 801–806 (2008)CrossRefGoogle Scholar
  66. 66.
    Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J. Appl. Polym. Sci. 112, 3157–3165 (2009)CrossRefGoogle Scholar
  67. 67.
    Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I.: Properties of lignin–polyurethane films prepared by casting method. Ind. Crops Prod. 20, 231–241 (2004)CrossRefGoogle Scholar
  68. 68.
    Gandini, A., Belgacem, M.N.: Partial or total oxypropilation of natural polymers and the use of the ensuing materials as composites or polyol macromonomers. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 273–288. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  69. 69.
    Velazquez-Morales, P., Gandini, A., Le Nest, J.P.: Polymer electrolytes derived from chitosan/polyether networks. Electrochim. Acta 43, 1275–1279 (1998)CrossRefGoogle Scholar
  70. 70.
    Fernandes, S., Freire, C.S.R., Pascoal-Neto, C., Gandini, A.: The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols. Green Chem. 10, 93–97 (2008)CrossRefGoogle Scholar
  71. 71.
    Evtouguina, M., Gandini, A., Barros, A.M., Cruz-Pinto, J.J., Pascoal-Neto, C., Belgacem, M.N.: The oxypropylation of cork residues: preliminary results. Bioresour. Technol. 73, 187–189 (2000)CrossRefGoogle Scholar
  72. 72.
    Evtiouguina, M., Barros-Timmons, A.M., Cruz-Pinto, J.J.C., Pascoal Neto, C., Belgacem, M.N., Gandini, A.: Oxypropylation of cork and use of the ensuing polyols in the polyurethane formulation. Biomacromolecules 3, 57–62 (2002)CrossRefGoogle Scholar
  73. 73.
    Pavier, C., Gandini, A.: Oxyproylation of sugar beet pulp. 1. Optimization of the reaction. Ind. Crops Prod. 12, 1–8 (2000)CrossRefGoogle Scholar
  74. 74.
    Pavier, C., Gandini, A.: Urethanes and polyurethanes from oxypropylated sugar beet pulp. I. Kinetic study in solution. Eur. Polymer J. 36, 1653–1658 (2000)CrossRefGoogle Scholar
  75. 75.
    Serrano, L., Alriols, M.G., Briones, R., Mondragón, I., Labidi, J.: Oxypropylation of rapeseed cake residue generated in the biodiesel production process. Ind. Eng. Chem. Res. 49, 1526–1529 (2010)CrossRefGoogle Scholar
  76. 76.
    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48, 2583–2589 (2009)CrossRefGoogle Scholar
  77. 77.
    Matos, M., Barreiro, M.F., Gandini, A.: Olive stone as a renewable source of biopolyols. Ind. Crops Prod. 32, 7–12 (2010)CrossRefGoogle Scholar
  78. 78.
    Gandini, A., Belgacem, M.N.: Furan derivatives and furan chemistry at the service of macromolecular materials. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 115–152. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  79. 79.
    Gandini, A., Coelho, D., Gomes, M., Reis, B., Silvestre, A.: Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J. Mat. Chem. 19, 8656–8664 (2009)CrossRefGoogle Scholar
  80. 80.
    Gandini, A.: Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym. Chem. 1, 245–251 (2010)CrossRefGoogle Scholar
  81. 81.
    Gandini, A., Belgacem, M.N.: Furfural and furanic polymers. Actual. Chim. 11–12, 56–61 (2002)Google Scholar
  82. 82.
    Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008)CrossRefGoogle Scholar
  83. 83.
    Lasseuguette, E., Gandini, A., Belgacem, M.N., Timpe, H.J.: Synthesis, characterization and photocross-linking of copolymers of furan and aliphatic hydroxyethylesters prepared by transesterification. Polymer 46, 5476–5483 (2005)CrossRefGoogle Scholar
  84. 84.
    Gandini, A., Belgacem, M.N.: Furans in polymer chemistry. Prog. Polym. Sci. 22, 1203–1379 (1997)CrossRefGoogle Scholar
  85. 85.
    Moreau, C., Gandini, A., Belgacem, M.N.: Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11–30 (2004)CrossRefGoogle Scholar
  86. 86.
    Geethamma, V.G., Joseph, R., Thomas, S.: Short coir fiber reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci. 55, 583–594 (1995)CrossRefGoogle Scholar
  87. 87.
    Geethamma, V.G., Kalaprasad, G., Groeninckx, G., Thomas, S.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manuf. 36, 1499–1506 (2005)CrossRefGoogle Scholar
  88. 88.
    Varghese, S., Kuriakose, B., Thomas, S., Koshy, A.T.: Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: effects of interfacial adhesion, fiber loading, and orientation. J. Adhes. Sci. Technol. 8, 235–248 (1994)CrossRefGoogle Scholar
  89. 89.
    Jacob, M., Thomas, S., Varughese, K.T.: Biodegradability and aging studies of hybrid biofiber reinforced natural rubber biocomposites. J. Biobased Mat. Bioenergy 1, 118–126 (2007)CrossRefGoogle Scholar
  90. 90.
    Nassar, M.M., Ashour, E.A., Washid, S.S.: Thermal characteristics of bagasse. J. Appl. Polym. Sci. 61, 885–890 (1996)CrossRefGoogle Scholar
  91. 91.
    De, D., De, D., Adhikari, B.: Curing characteristics and mechanical properties of alkali-treated grass-fiber-filled natural rubber composites and effects of bonding agent. J. Appl. Polym. Sci. 101, 3151–3160 (2006)CrossRefGoogle Scholar
  92. 92.
    Bhattacharya, T.B., Biswas, A.K., Chaterjee, J., Pramanick, D.: Short pineapple leaf fibre reinforced rubber composites. Plast. Rubber Process. Appl. 6, 119–125 (1986)Google Scholar
  93. 93.
    Lopattananon, N., Panawarangkul, K., Sahakaro, K., Ellis, B.: Performance of pineapple leaf fiber-natural rubber composites: the effect of fiber surface treatments. J. Appl. Polym. Sci. 102, 1974–1984 (2006)CrossRefGoogle Scholar
  94. 94.
    Arumugam, N., Tamareselvy, K., Venkata Rao, K., Rajalingam, P.: Coconut-fiber-reinforced rubber composites. J. Appl. Polym. Sci. 37, 2645–2659 (1989)CrossRefGoogle Scholar
  95. 95.
    Mathew, L., Joseph, K.U., Joseph, R.: Isora fibres and their composites with natural rubber. Prog. Rubber Plast. Recycl. Technol. 20, 337–349 (2004)Google Scholar
  96. 96.
    Joseph, S., Appukuttan, S.P., Kenny, J.M., Puglia, D., Thomas, S., Joseph, K.: Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites. J. Appl. Polym. Sci. 117, 1298–1308 (2010)Google Scholar
  97. 97.
    Madani, M., Basta, A.H., Abdo, A.E.-S., El-Saied, H.: Utilization of waste paper in the manufacture of natural rubber composite for radiation shielding. Prog. Rubbers Plast. Recycl. Technol. 20, 210–287 (2004)Google Scholar
  98. 98.
    Jacob, M., Thomas, S., Varughese, K.T.: Novel woven sisal fabric reinforced natural rubber composites: tensile and swelling characteristics. J. Compos. Mat. 40, 1471–1485 (2006)CrossRefGoogle Scholar
  99. 99.
    Jacob, M., Varughese, K.T., Thomas, S.: Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 64, 955–965 (2004)CrossRefGoogle Scholar
  100. 100.
    Jacob, M., Varughese, K.T., Thomas, S.: Natural rubber composites reinforced with sisal/oil palm hybrid fiber: tensile and cure characteristics. J. Appl. Polym. Sci. 93, 2305–2312 (2004)CrossRefGoogle Scholar
  101. 101.
    Anuar, H., Ahmad, S.H., Rasid, R., Ahmad, A., Busu, W.N.W.: Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J. Appl. Polym. Sci. 107, 4043–4052 (2008)CrossRefGoogle Scholar
  102. 102.
    Pasquini, D., Teixeira, E.D., Curvelo, A.A.D., Belgacem, M.N., Dufresne, A.: Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind. Crops Prod. 32, 486–490 (2010)CrossRefGoogle Scholar
  103. 103.
    Bras, J., Hassan, M.L., Bruzesse, C., Hassan, E.A., El-Wakil, N.A., Dufresne, A.: Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod. 32, 627–633 (2010)CrossRefGoogle Scholar
  104. 104.
    Bendahou, A., Kaddami, H., Dufresne, A.: Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur. Polymer J. 46, 609–620 (2010)CrossRefGoogle Scholar
  105. 105.
    Bendahou, A., Kaddami, H., Raihane, M., Habibi, Y., Dufresne, A.: Nanocomposite materials based on date palm tree cellulose whiskers. Rev. Roum. Chim. 54, 571–575 (2009)Google Scholar
  106. 106.
    Bendahou, A., Habibi, Y., Kaddami, H., Dufresne, A.: Physico-chemical characterization of palm from phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J. Biobased Mat. Bioenergy 3, 81–90 (2009)CrossRefGoogle Scholar
  107. 107.
    Nair, K.G., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)CrossRefGoogle Scholar
  108. 108.
    Nair, K.G., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4, 666–674 (2003)CrossRefGoogle Scholar
  109. 109.
    Nair, K.G., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4, 657–665 (2003)CrossRefGoogle Scholar
  110. 110.
    Siqueira, G., Abdillahi, H., Brass, J., Dufresne, A.: High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17, 289–298 (2010)CrossRefGoogle Scholar
  111. 111.
    Mano, E.B., Nunes, R.C.R.: Regenerated cellulose in elastomer compounds. Eur. Polymer J. 19, 919–921 (1983)CrossRefGoogle Scholar
  112. 112.
    Kosikova, B., Alexy, P., Gregorova, A.: Use of lignin products derived from wood pulping as environmentally desirable component of composite rubber materials. Wood Res. 48, 62–67 (2003)Google Scholar
  113. 113.
    Jong, L.: Characterization of defatted soy flour and elastomer composites. J. Appl. Polym. Sci. 98, 353–361 (2005)CrossRefGoogle Scholar
  114. 114.
    Chen, Y., Zhang, L., Du, L.: Structure and properties of composites compression-molded from polyurethane prepolymer and various soy products. Ind. Eng. Chem. Res. 42, 6786–6794 (2003)CrossRefGoogle Scholar
  115. 115.
    Song, Y., Zheng, Q.: Structure and properties of methylcellulose microfiber reinforced wheat gluten based green composites. Ind. Crops Prod. 29, 446–454 (2009)CrossRefGoogle Scholar
  116. 116.
    Gandini, A., Curvelo, A.A.S., Pasquini, D., de Menezes, A.J.: Direct transformation of cellulose fibres into self-reinforced composites by partial oxypropylation. Polymer 46, 10611–10613 (2005)CrossRefGoogle Scholar
  117. 117.
    de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Novel thermoplastic materials based on the outer-shell oxypropylation of corn starch granules. Biomacromolecules 8, 2047–2050 (2007)CrossRefGoogle Scholar
  118. 118.
    de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties. Cellulose 16, 239–246 (2009)CrossRefGoogle Scholar
  119. 119.
    de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 1. Characterization of the materials obtained with different types of fibers. Carbohydr. Polym. 76, 437–442 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Federal de UberlândiaUberlândiaBrazil

Personalised recommendations