Reinforced Elastomers: Interphase Modification and Compatibilization in Rubber-Based Nanocomposites

  • Petroula A. TarantiliEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 12)


An extended review is presented on the structure and properties of filler-matrix interface in reinforced elastomeric materials, since the above characteristics are critical for the overall performance of the related products. The current trends for interphase modification in rubber systems containing various fillers, such as Carbon black, Silica, Calcium Carbonate, Clays with emphasis on clay nanofillers, as well as Graphene is discussed. The use of fibrilar reinforcements is also reported, including traditional materials, such as Natural fibres, as well as Aramids and Carbon Nanotubes. On the other hand, the concept of hybrid composites, i.e., those composed of a mixture of matrices or reinforcements, further enhances the versatility of those materials, since it provides new possibilities of extending the area of rubber applications. In fact, the above products combine the property improvement attributed to each one of the system’s components and, moreover, they can usually take advantage of their synergistic action. In the same context the role of some other additives, necessary to adjust mechanical properties (e.g. plasticizers) or to promote phase miscibility in complex systems, such as compatibilizers, was investigated. The vulcanization of elastomeric materials is a critical step, with high impact on the properties of final products. In fact, the extent of this reaction, the cross-links density along with the other network parameters, are some important factors controlling the overall behavior of the vulcanized rubber and, therefore, monitoring, control, and modeling of rubber vulcanization are also examined in this work. The above review showed that the main reason for reinforcing rubbers is to improve their mechanical and thermal properties, as well as to reduce cost and sometimes the weight of a construction. It seemed that recent advances in nanoparticles have attracted much attention in manufacturing of rubber nanocomposites, because of the small size of filler and the corresponding increase in the surface area, which leads to the required mechanical properties at low filler loading. Carbon nanotubes and graphene nanoparticles are promising materials, offering good electrical properties. Surface treatment of the filler particles with the appropriate coupling agents is often vital, in order to promote proper dispersion and adequate filler/matrix interactions. Also, efficient dispersion of the reinforcement into rubber matrices usually needs the assistance of functionalized polymers, i.e., compatibilizers. Among the different modifying agents, maleic anhydride is the most commonly used and seems to ensure best results at relatively low cost. Finally, the cross-linking parameters must be controlled for an optimal network formation. The newly developed polyblends, based on mixtures of rubbers with polyolefins, require the suitable compatibilization in order to reveal their unique properties. Nanoparticles, being very efficient reinforcing agents even at low concentrations, were also found to play the role of compatibilizer for these mixtures of immiscible polymers.


Graphene Oxide Natural Rubber Silicone Rubber Maleic Anhydride Interfacial Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



3-aminopropyl-triethoxy silane


Butyl rubber


Acrylic rubber




Sb doped tin dioxide


Brominated polyisobutylene-co-paramethylstyrene


Benzophenone-3,3′,4,4′-tetracarboxylic dianhydride


Butadiene rubber






Carbon black


Carbon nanotubes


Carboxylated SEBS




Density functional theory


Differential scanning calorimetry


Ethylene acrylate rubber


Epoxidized natural rubber


Ethylene-octene copolymer


Ethylene-propylene-diene rubber


Ethylene-propylene rubber


Ethylene-propylene rubber grafted with maleic anhydride


Ethyl-vinyl acetate copolymer


Functionalized graphene sheets




Graphite intercalated compound


Glass fibres


Glycidyl methacrylate


Graphite nanosheets


Graphene oxide


High density polyethylene




Hydrogenated acrylonitrile butadiene rubber


High temperature vulcanized silicone rubber


Carboxylated NBR


Isotactic polypropylene


Kenaf fibres


Liquid polybutadiene


Low-density polyethylene


Maleic anhydride grafted EPDM


Maleic anhydride grafted 1,2 polybutadiene


Master batch


Methylene-bis-diphenyl diisocyanate


Modified graphene


Magnesium hydroxide




Maleic anhydride grafted propylene-butadiene copolymer










Methyl vinyl silicone rubber


Multiwall nanotubes


Acrylonitrile-butadiene rubber


Natural graphite


Natural rubber


Maleic anhydride grafted natural rubber






Online measured electrical conductance


Organophilic montmorillonite


Pyrromellitic dianhydride


Petroleum resin




Polyurethane rubber


Poly(amide), nylon




Poly(dimethyl siloxane)


Polyethylene grafted maleic anhydride


Parts per hundred


Poly(propylnene-eyhylene acrylic acid)


Polypropylene grafted maleic anhydride




Rubber-based friction materials


Resorcinol fromaldehayde latex


Reduced GO


Room temperature vulcanized


Red phosphorus


Surface-acetylated cellulose powder


Styrene-dutadiene rubber




Styrene-ethylene- butylene- styrene


Styrene-ethylene- butylene- styrene grafted maleic anhydride


Scanning electron microscopy


Poly(styrene-b-ethylene-co-propylene) diblock copolymer




Styrene rubber block copolymer blends


Single wall nanotubes


Transmittance electron microscopy




1,4-phenylene diisocyanate (PPDI), methylene-bis-diphenyl


Glass transition temperature


Thermoplastic natural rubber


Ultrasonically assisted latex mixing process


Butadiene–styrene–vinyl pyridine rubber


White rice husk ash


X-ray diffraction


  1. 1.
    Hull, D.: An introduction to composite materials. Cambridge University Press, New York (1987)Google Scholar
  2. 2.
    Bokobza, L.: J. Appl. Polym. Sci. 93, 2095–2104 (2004)Google Scholar
  3. 3.
    Xanthos, M.: Polym. Eng. Sci. 28, 1392–1400 (1988)Google Scholar
  4. 4.
    Dagli, S.S., Xanthos, M., Biesenberger, J.A.: Emerging technologies in plastics recycling. In: Andrews G.D., Subramanian, P.M. (eds.) ACS Symposium Series, vol. 513 Chapter 19 (1992)Google Scholar
  5. 5.
    Faisant, J.B., Ait-Kadi, A., Bousmina, M., Deschênes, L.: Polymer. J. Appl. Polym. Sci. 39, 533–545 (1998)Google Scholar
  6. 6.
    Willis, J.M., Caldas, V., Favis, B.D.: J. Mater. Sci. 26, 4742–4750 (1991)Google Scholar
  7. 7.
    Bhowmick, A.K., Stephens, H.L.: Handbook of Elastomers, 2nd edn. Marcel Dekker, New York (2001)Google Scholar
  8. 8.
    Pramanik, M., Srivastava, S. K., Samantaray, B. K., Bhowmick, A. K.: J. Polym. Sci. B. 40, 2065–2072 (2002)Google Scholar
  9. 9.
    Mai, Y.-W., Yu, Z.Z. (eds.) Polymer Nanocomposies. Woodhead Publishing Ltd, Cambridge (2006)Google Scholar
  10. 10.
    Mathew, T., Datta, R.N., Dierkes, W.K., Talma, A.G., van Ooij, W.J., Noordermeer, J.W.M.: Macromolecular Materials and Engineering, vol. 296, pp. 42–52 (2011)Google Scholar
  11. 11.
    Lopez, J.F., Perez, L.D., Lopez, B.L.: J. Appl. Polym. Sci. 122, 2130–2138 (2011)Google Scholar
  12. 12.
    Hui, S., Chaki, T. K., Chattopadhyay, S.:J. Appl. Polym. Sci. 110, 825–836 (2008)Google Scholar
  13. 13.
    Bertona, A., Castellano, M., Marsano, E., Alessi, M., Conzatti, L., Stagnaro, P., Colucci, G., Priola, A., Turturro, A.: Macromol. Mater. Eng. 296, 455–464 (2011)Google Scholar
  14. 14.
    Stöckelhuber, K.W., Svistkov, A.S., Pelevin, A.G., Heinrich, G.: Macromolecules 44, 4366–4381 (2011)Google Scholar
  15. 15.
    Bandyopadhyay, A., Maiti, M., Bhowmick, A.K.: Mater. Sci. Technol. 22, 818–828 (2006)Google Scholar
  16. 16.
    Hikasa, S., Nagata, K., Miyahara, K., Izumi, T., Suda, T., Toyohara, A., Kato, A., Nakamura, Y.: J. Appl. Polym. Sci. 114, 919–927 (2009)Google Scholar
  17. 17.
    Song, X., Yoshino, H., Shibata, H., Nagatani, A., Ueda, Y.: J. Appl. Polym. Sci. 113, 3661–3670 (2009)Google Scholar
  18. 18.
    Fekete, E., Móczó, J., Pukánszky, B.: J. Colloid Interf. Sci. 269, 143–152 (2004)Google Scholar
  19. 19.
    Kolarik, J., Lednicky, F., Jancar, J., Pukanszky, B.: Polym. Commun. 31, 201–204 (1990)Google Scholar
  20. 20.
    Kolarik, J., Jancar, J.: Polymer 33, 4961–4967 (1992)Google Scholar
  21. 21.
    Mnif, F., Massardier, V., Kallel, T., Elleuch, B.: Polym. Adv. Technol. 21, 896–903 (2010)Google Scholar
  22. 22.
    Chang, Y.W., Shin, J.Y., Ryu, S.H.: Polym. Int. 53, 1047–1051 (2004)Google Scholar
  23. 23.
    Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Polymer 46, 5986–5991 (2005)Google Scholar
  24. 24.
    Lai, S.-M., Chen, W.-C., Chen, C.-M.: Eur. Polym. J. 44, 3535–3547 (2008)Google Scholar
  25. 25.
    Martín, Z., Jiménez, I., Gómez, M.A., Ade, H., Kilcoyne, D.A.: Macromolecules 43, 448–453 (2010)Google Scholar
  26. 26.
    Cheng, Q., Lü, Z., Byrne, H.: J. Appl. Polym. Sci. 114, 1820–1827 (2009)Google Scholar
  27. 27.
    Mousa, A., Kocsis, J.-K.: Macromol. Mater. Eng. 286, 260–266 (2001)Google Scholar
  28. 28.
    Zhang, Z., Zhang, L., Li, Y., Xu, H.: Polymer 46, 129–136 (2005)Google Scholar
  29. 29.
    Sadhu, S., Bhowmick, A.K.: Rubber Chem. Technol. 76, 860–875 (2003)Google Scholar
  30. 30.
    Magaraphan, R., Thaijaroen, W., Ochakun, R.L.: Rubber Chem. Technol. 76, 406–418 (2003)Google Scholar
  31. 31.
    Varghese, S., Gatos, K.G., Apostolov, A.A., Kocsis, J.K.: J. Appl. Polym. Sci. 92, 543–551 (2004)Google Scholar
  32. 32.
    Conzatti, L., Stagnaro, P., Colucci, G., Bongiovanni, R., Priola, A., Lostritto, A., Galimberti, M.: Appl. Clay Sci. 61, 14–21 (2012)Google Scholar
  33. 33.
    Rajasekar, R., Nayak, G. C., Malas, A., Das, C. K.: Mater. Des. 35, 878–885 (2012)Google Scholar
  34. 34.
    Zheng, H., Zhang, Y., Peng, Z., Zhang, Y.: J. Appl. Polym. Sci. 92, 638–646 (2004)Google Scholar
  35. 35.
    Gatos, K.G., Thomann, R., Kocsis, J.K.: Polym. Int. 53, 1191–1197 (2004)Google Scholar
  36. 36.
    Mohammadpour, Y., Katbab, A.A.: J. Appl. Polym. Sci.: 106, 4209–4218 (2007)Google Scholar
  37. 37.
    Bandyopadhyay, A., Maiti, M., Bhowmick, A.K.: Mater. Sci. Technol. 22, 818–828 (2006)Google Scholar
  38. 38.
    Kim, J.-T., Lee, D.-Y., Oh, T.-S., Lee, D.-H.: J. Appl. Polym. Sci. 89, 2633–2640 (2003)Google Scholar
  39. 39.
    Kim, J.-T., Oh, T.-S., Lee, D.-H.: Polym. Int. 52, 1058–1063 (2003)Google Scholar
  40. 40.
    Kim, J.-T., Lee, D.-Y., Oh, T.-S., Lee, D.-H.: Polym. Int. 52, 1203–1208 (2003)Google Scholar
  41. 41.
    Kwon, J., Kim, H.: J. Polym. Sci. A. 43, 3973–3985 (2005)Google Scholar
  42. 42.
    Ramanathan, T., Liu, H., Brinson, L.C.: J. Polym. Sci. B. 43, 2269–2279 (2005)Google Scholar
  43. 43.
    Wu, H.-L., Yang, Y.-T., Ma, C.-C.M.: J. Polym. Sci. A. 43, 6084–6094 (2005)Google Scholar
  44. 44.
    Sui, G., Zhong, W. H., Yang, X. P., Yu, Y. H.: Mater. Sci. Eng. A. 485, 524–531 (2008)Google Scholar
  45. 45.
    Pedroni, L.G., Soto-Oviedo, M.A., Rosolen, J.M., Felisberti, M. I., Nogueira, A.F.: J. Appl. Polym. Sci. 112, 3241–3248 (2009)Google Scholar
  46. 46.
    Cataldo, F., Ursini, O., Angelini, G.: Fuller. Nanotub. Car. N. 17, 55–66 (2009)Google Scholar
  47. 47.
    Bokobza, L.: Polymer 48, 4907–4920 (2007)Google Scholar
  48. 48.
    Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Prog. Mater. Sci. 56, 1178–1271 (2011)Google Scholar
  49. 49.
    Zaman, I., Kuan, H.-C., Meng, Q., Michelmore, A., Kawashima, N., Pitt, T., Zhang, L., Gouda, S., Luong, L., Ma, J.: Adv. Func. Mater. 22, 2735–2743 (2012)Google Scholar
  50. 50.
    Bai, X., Wan, C., Zhang, Y., Zhai, Y.: Carbon 49, 1608–1613 (2011)Google Scholar
  51. 51.
    Lian, H., Li, S., Liu, K., Xu, L., Wang, K., Guo, W.: Polym. Eng. Sci. 51, 2254–2260 (2012)Google Scholar
  52. 52.
    Chen, B., Ma, N., Bai, X., Zhang, H., Zhang, Y.: RSC Adv. 2, 4683–4689 (2012)Google Scholar
  53. 53.
    Ozbas, B., O’Neill, C.D., Register, R.A., Aksay, I.A., Prud’homme, R.K., Adamson, D.H.: J. Polym. Sci.B. 50, 910–916 (2012)Google Scholar
  54. 54.
    Potts, J.R., Shankar, O., Du, L., Ruoff, R.S.: Macromolecules 45, 6045–6055 (2012)Google Scholar
  55. 55.
    Chantaratcharoen, A., Sirisinha, C., Amornsakchai, T., Limcharoen, S.B., Meesiri, W.: J. Appl. Polym. Sci. 74, 2414–2422 (1999)Google Scholar
  56. 56.
    Mori, M., Uyama, Y., Ikada, Y.: Polymer 34, 5336–5341 (1994)Google Scholar
  57. 57.
    Tarantili, P.A., Andreopoulos, A. G.:J. Appl. Polym. Sci.: 65, 267–276 (1997)Google Scholar
  58. 58.
    Bousoulas, J., Tarantili, P.A., Andreopoulos, A.G.: Adv. Compos. Lett. 10, 239–245 (2001)Google Scholar
  59. 59.
    Ahmad, I., Chin, T.S., Cheong, C.K., Jalar, A., Abdullah, I.: American J. Appl. Sci. Special Issue(14–20) (2005)Google Scholar
  60. 60.
    Andreopoulos, A.G., Konstantinidou, A.V., Petsalas, H. J.: J. Appl. Polym. Sci. 38, 2073–2078 (1989)Google Scholar
  61. 61.
    Amornsakchai, T., Sinpatanapan, B., Limcharoen, S.B., Meesiri, W.: Polymer 40, 2993–2999 (1999)Google Scholar
  62. 62.
    Ahmad, I., Wong, P.Y., Abdullah, I.: Polym. Compos. 27, 395–401 (2006)Google Scholar
  63. 63.
    Shibulal, G.S., Naskar, K.: J. Polym. Res. 18, 2295–2306 (2011)Google Scholar
  64. 64.
    Amornsakchai, T., Sinpatanapan, B., Limcharoen, S.B.: Polymer 40, 2993–2999 (1999)Google Scholar
  65. 65.
    Georgopoulos, STh, Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G., Koukios, E.G.: Polym. Degrad. Stab. 90, 303–312 (2005)Google Scholar
  66. 66.
    Baroulaki, I., Karakasi, O., Pappa, G., Tarantili, P.A., Economides, D., Magoulas, K.: Compos. A Appl. Sci. Manuf. 37, 1613–1625 (2005)Google Scholar
  67. 67.
    Katsoulotos, G., Tarantili, P.A.: J. Appl. Polym. Sci. 107, 2385–2393 (2008)Google Scholar
  68. 68.
    George, J., Sreekala, M.S., Thomas, S.: Polym. Eng. Sci. 41, 1471–1485 (2001)Google Scholar
  69. 69.
    Abdelmouleh, M., Boufi, S., Belgacem, M.N., Dufresne, A.: Compos. Sci. Technol. 67, 1627–1639 (2007)Google Scholar
  70. 70.
    Varghese, S., Kuriakose, B., Thomas, S.: J. Appl. Polym. Sci. 53, 1051–1060 (1994)Google Scholar
  71. 71.
    Martins, M.A., Joekes, I.: J. Appl. Polym. Sci. 89, 2507–2515 (2003)Google Scholar
  72. 72.
    Zhang, W., Zhang, X., Liang, M., Lu, C.: Compos. Sci. Technol. 68, 2479–2484 (2008)Google Scholar
  73. 73.
    Ly, B., Thielemans, W., Dufresne, A., Chaussy, D., Belgacem, M.N.: Compos. Sci. Technol. 68, 3193–3201 (2008)Google Scholar
  74. 74.
    Yakubu, M.K., Gumel, M.S., Umar, A., Metelerkamp, R.: J. Reinf. Plast. Compos. 29, 2855–2868 (2010)Google Scholar
  75. 75.
    Wongsorat, W., Suppakarn, N., Jarukumjorn, K.: Adv. Mater. Res. 410, 63–66 (2011)Google Scholar
  76. 76.
    Su, J., Chen, S., Zhang, J.: Polym. Test. 30, 195–203 (2011)Google Scholar
  77. 77.
    Jia, X., Li, G., Yu, Y., Sui, G., Liu, H., Li, Y., Li, P., Yang, X.: J. Appl. Polym. Sci. 113, 283–289 (2009)Google Scholar
  78. 78.
    Manjhi, S., Sarkhel, G.: J. Appl. Polym. Sci. 119, 2268–2274 (2011)Google Scholar
  79. 79.
    Ismail, H., Mathialagan, M.: J. Appl. Polym. Sci., in Press (2012)Google Scholar
  80. 80.
    Pasbakhsh, P., Ismail, H., Fauzi, M.N.A., Bakar, A.A.: Polym. Test. 28, 548–559 (2009)Google Scholar
  81. 81.
    Burnside, S.D., Giannelis, E.P.: Chem. Mater. 7, 1597–1600 (1995)Google Scholar
  82. 82.
    Wang, S., Long, C., Wang, X., Li, Q., Qi, Z.: J. Appl. Polym. Sci. 69, 1557–1561 (1998)Google Scholar
  83. 83.
    Wang, J., Chen, Y., Jin, Q.: Macromol. Chem. Phys. 206, 2512–2520 (2005)Google Scholar
  84. 84.
    Wang, J., Chen, Y., Jin, Q.: J. Adhes. Sci. Technol. 20, 261–276 (2006)Google Scholar
  85. 85.
    Kim, E.S., Shim, J.H., Jung, S.H., Joo, J.H., Yoon, J.-S., Lee, S.H.: Polym.Int. 59, 479–485 (2010)Google Scholar
  86. 86.
    Labruyère, C., Gorrasi, G., Alexandre, M., Dubois, Ph: Polymer 50, 3626–3637 (2009)Google Scholar
  87. 87.
    Labruyère, C., Monteverde, F., Alexandre, M., Dubois, Ph: J. Nanosci. Nanotechnol. 9, 2731–2738 (2009)Google Scholar
  88. 88.
    Takeuchi, H., Cohen, C.: Macromolecules 32, 6792–6799 (1999)Google Scholar
  89. 89.
    Ma, J., Xu, J., Ren, J.-H., Yu, Z.-Z., Mai, Y.-W. : Polymer 44, 4619–4624 (2003)Google Scholar
  90. 90.
    Ma, J., Yu, Z–.Z., Kuan, H.-C., Dasari, A., Mai, Y.-W.: Macromol. Rapid Commun. 26, 830–833 (2005)Google Scholar
  91. 91.
    Wang, J., Chen, Y.: J. Appl. Polym. Sci. 107, 2059–2066 (2008)Google Scholar
  92. 92.
    Schmidt, D. F., Clément, F., Giannelis, E. P.: Adv. Funct. Mater. 16, 417–425 (2006)Google Scholar
  93. 93.
    Kaneko, M.L.Q.A., Romero, R.B., Goncalves, M.C.: Eur. Polym. J. 46, 881–890 (2010)Google Scholar
  94. 94.
    Yang, L., Hu, Y., Lu, H., Song, L.: J. Appl. Polym. Sci. 99, 3275–3280 (2006)Google Scholar
  95. 95.
    Liu, Q., De Kee, D.: Can. J. Chem. Eng. 85, 36–44 (2007)Google Scholar
  96. 96.
    Simon, M.W., Stafford, K.T., Ou, D.L.: J. Inorg. Organomet. Polym. 18, 364–373 (2008)Google Scholar
  97. 97.
    Wang, J., Chen, Y., Wang, J.: J. Appl. Polym. Sci. 111, 658–667 (2009)Google Scholar
  98. 98.
    Kim, E.S., Kim, H.S., Jung, S.H., Yoon, J.S.: J. Appl. Polym. Sci. 103, 2782–2787 (2007)Google Scholar
  99. 99.
    Schmidt, D.F., Giannelis, E.: Chem. Mater. 22, 167–174 (2010)Google Scholar
  100. 100.
    Vasilakos, S.P., Tarantili, P.A.: J. Appl. Polym. Sci. 125(1), E548–E560 (2012)Google Scholar
  101. 101.
    Wang, M.-J.: Rubber Chem. Technol. 71, 520–589 (1998)Google Scholar
  102. 102.
    Murphy, L.J., Wang, M.-J., Mahmud, K.: Rubber Chem. Technol. 71, 998–1014 (1998)Google Scholar
  103. 103.
    Bokobza, L., Leroy, E., Lalanne, V.: Eur. Polym. J. 45, 996–1001 (2009)Google Scholar
  104. 104.
    Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.-L., El Bounia, N.-E.: J. Polym. Sci. B 46, 1939–1951 (2008)Google Scholar
  105. 105.
    Ismail, H., Ramly, A. F., Othman, N.: J. Appl. Polym. Sci. doi:  10.1002/APP.38298 (2012)
  106. 106.
    Kotov, N. A.: Nature 442, 254–255 (2006)Google Scholar
  107. 107.
    Park, S., Ruoff, R.S.: Nat. Nanotechnol. 4, 217–224 (2009)Google Scholar
  108. 108.
    Hu, H., Zhao, L., Liu, J., Liu, Y., Cheng, J., Luo, J., Liang, Y., Tao, Y., Wang, X., Zhao, J.: Polymer 53, 3378–3385 (2012)Google Scholar
  109. 109.
    Tarawneh, M.A., Ahmad, S.H., Noum, S.Y.E., Ahmad, K.Z.K.: J. Reinf. Plast. Compos. 30, 1745–1752 (2011)Google Scholar
  110. 110.
    Tang, Z., Wu, X., Guo, B., Zhang, L., Jia, D.: J. Mater. Chem. 22, 7492–7501 (2012)Google Scholar
  111. 111.
    Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M.: Compos. B 38, 367–379 (2007)Google Scholar
  112. 112.
    Anuar, H., Wan Busu, W.N., Ahmad, S.H., Rasid, R.: J. Compos. Mater. 42, 1075–1087 (2008)Google Scholar
  113. 113.
    Lopattananon, N., Jitkalong, D., Seadan, M.: J. Appl. Polym. Sci. 120, 3242–3254 (2011)Google Scholar
  114. 114.
    Shojaei, A., Arjmand, M., Saffar, A.: J. Mater. Sci. 46, 1890–1901 (2011)Google Scholar
  115. 115.
    Mathew, G., Rhee, J.M., Lee, Y.-S., Park, D.H., Nah, C.: J. Indust. Eng. Chem. 14, 60–65 (2008)Google Scholar
  116. 116.
    Lόpez-Manchado, M.A., Herrero, B., Arroyo, M.: Polym. Int. 52, 1070–1077 (2003)Google Scholar
  117. 117.
    López-Manchado, M.A., Arroyo, M., Herrero, B., Biagiotti, J.: J. Appl. Polym. Sci. 89, 1–15 (2003)Google Scholar
  118. 118.
    Lόpez-Manchado, M.A., Valentín, J.L., Carretero, J., Barroso, F., Arroyo, M.: Eur. Polym. J. 43, 4143–4150 (2007)Google Scholar
  119. 119.
    Carretero-González, J., Retsos, H., Verdejo, R., Toki, S., Hsiao, B., Giannelis, E.P., López-Manchado, M.A.: Macromolecules 41, 6763–6772 (2008)Google Scholar
  120. 120.
    Cataldo, F.: Macromol. Symp. 247, 67–77 (2007)Google Scholar
  121. 121.
    Lopez, L.M., Cosgrove, A.B., Hernandez-Ortiz, J.P., Osswald, T.A.: Polym. Eng. Sci. 47, 675–683 (2007)Google Scholar
  122. 122.
    Hong, I.-K., Lee, S.: J. Ind. Eng. Chem., (in Press) (2012)Google Scholar
  123. 123.
    Mathew, G., Rhee, J., Lee, Y., Park, D., Nah, C.: J. Ind. Eng. Chem. 14, 60–65 (2008)Google Scholar
  124. 124.
    Kader, M., Nah, C.: Polymer 45, 2237–2247 (2004)Google Scholar
  125. 125.
    Montserrat, S., Málek, J.: Thermochim. Acta. 228, 47–60 (1993)Google Scholar
  126. 126.
    Ŝesták, C., Berggren, G.: Thermochim. Acta. 3, 1–12 (1971)Google Scholar
  127. 127.
    Kissinger, H.E.: Anal. Chem. 29, 1702–1706 (1957)Google Scholar
  128. 128.
    Ozawa, T.: Bull. Chem. Soc. Jpn., 38, 1881–1886 (1965)Google Scholar
  129. 129.
    Vasilakos, S.P., Tarantili, P.A.: In-situ monitoring and modeling of the curing reaction of vinyl terminated polysiloxane/layered silicate nanocomposites, submitted for publicationGoogle Scholar
  130. 130.
    Labruyère, C., Monteverde, F., Alexandre, M., Dubois, P.: J. Nanosci. Nanotechnol. 9, 2731–2738 (2009)Google Scholar
  131. 131.
    Zhang, Y., Pang, M., Xu, Q., Lu, H., Zhang, J., Feng, S.: Polym. Eng. Sci. 51, 170–178 (2011)Google Scholar
  132. 132.
    Takeuchi, H., Cohen, C.: Macromolecules 32, 6792–6799 (1999)Google Scholar
  133. 133.
    Wang, J., Chen, Y., Jin, Q.: High. Perform. Polym. 18, 325–340 (2006)Google Scholar
  134. 134.
    Kong, Q., Hu, Y., Song, L., Wang, Y., Chen, Z., Fan, W.: Polym. Advan. Technol. 17, 463–467 (2006)Google Scholar
  135. 135.
    Work, W.J., Horie, K., Hess, M., Stepto, R.F.T.: Pure Appl. Chem. 76, 1985–2007 (2004)Google Scholar
  136. 136.
    Utracki, L.A. (ed.): Polymer Blends, Handbook, Springer, Netherlands (2002)Google Scholar
  137. 137.
    Lipatov, Y.S.: Polymer Reinforcement. ChemTec Publishing, Toronto (1995)Google Scholar
  138. 138.
    Wu, D.F., Zhang, Y.S., Zhang, M., Yu, W.: Biomacromolecules 10, 417–424 (2009)Google Scholar
  139. 139.
    Essawy, H., El-Nashar, D.: Polym. Test 23, 803–807 (2004)Google Scholar
  140. 140.
    Khatua, B.B., Lee, D.J., Kim, H.Y., Kim, J.K.: Macromolecules 37, 2454–2459 (2004)Google Scholar
  141. 141.
    Nesterov, A.E., Lipatov, Y.S.: Polymer 40, 1347–1349 (1999)Google Scholar
  142. 142.
    Gritsenko, O.T., Nesterov, A.E.: Eur. Polym. J. 27, 455–459 (1991)Google Scholar
  143. 143.
    Fisher, R., Zhang, M.W., Hu, X., Lin, M., Gersoppe, D., Sokalov, J., Rafailovich, M., Rubenstein, M., Winesett, A.H.: 7th International Conference on Atomically Controlled Surfaces, Nara, Japan, 2003Google Scholar
  144. 144.
    Ali, Z., Le, H.H., Ilisch, S., Thurn-Albrecht, T., Radusch, H.-J.: Polymer 51, 4580–4588 (2010)Google Scholar
  145. 145.
    Hwang, W.-G., Wei, K.-H., Wu, C.-M.: Polym. Eng. Sci. 46, 80–88 (2006)Google Scholar
  146. 146.
    Yan, N., Xia, H., Wu, J., Zhan, Y., Fei, G., Chen, C.: J. Appl. Polym. Sci. (2012). doi: 10.1002/APP.37861 Google Scholar
  147. 147.
    Shafieizadegan Esfahani, A.R., Katbab, A.A., Dehkhoda, P., Karami, H.R., Barikani, M., Sadeghi, S.H.H.: Compos. Sci. Technol. 72, 382–389 (2012)Google Scholar
  148. 148.
    Ma, J., Feng, Y.X., Xu, J., Xiong, M.L., Zhu, Y.J., Zhang, L. Q.: Polymer 43, 937–945 (2002)Google Scholar
  149. 149.
    Ismail, H., Mega, L.: Polym. Plast. Technol. Eng. 40, 463–478 (2001)Google Scholar
  150. 150.
    López Manchado, M. A., Arroyo, M., Biagiotti, J., Kenny, J. M.: J. Appl. Polym. Sci. 90, 2170–2178 (2003)Google Scholar
  151. 151.
    Pukanszky, B.: Composites 21, 255–262 (1990)Google Scholar
  152. 152.
    Hui, S., Chaki, T.K., Chattopadhyay, S.: J. Appl. Polym. Sci. 110, 825–836 (2008)Google Scholar
  153. 153.
    Denac, M., Šmit, I., Musil, V.: Compos. A 36, 1094–1101 (2005)Google Scholar
  154. 154.
    Denac, M., Musil, V., Šmit, I.: Compos. A 36, 1282–1290 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Polymer Technology Lab., School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations