Advertisement

Elastomer Macrocomposites

  • N. K. AnifantisEmail author
  • S. K. Georgantzinos
  • G. I. Giannopoulos
  • P. A. Kakavas
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 12)

Abstract

This chapter summarizes many of the recent technical research accomplishments in the area of elastomer macrocomposites. Firstly, it explains the compounds that exist in elastomeric matrices as well as the types of filler used in order to reinforce them. Then, the various recent attempts reported on advances of elastomer based macrocomposites are discussed. In addition, an analytical description in their manufacturing techniques and processes is comprehensively reported. Moreover, the techniques used to structurally and mechanically characterize the elastomeric macrocomposites are covered. Their usage in commercial applications is described as a final point.

Keywords

Carbon Black Injection Molding Natural Rubber Styrene Butadiene Rubber Epoxidized Natural Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ASTM D 1566-98, Standard Terminology Relating to Rubber (1991)Google Scholar
  2. 2.
    Suzuki, D.: The tree that changed the world, (videotape). Canadian Broadcasting Corporation, Ottawa, Canada, Rubber Developments, 44(1), 11 (1991)Google Scholar
  3. 3.
    Subramaniam.: Natural rubber, in rubber technology. Morton, M. (ed.). Van Nostrand Reinhold, New York (1987)Google Scholar
  4. 4.
    Stern, H.J.: History, In rubber technology and manufacture. Blow, C.M. (ed.). p. 2, Newnes-Butterworths, London (1977)Google Scholar
  5. 5.
    Buist, J.M.: Proceedings of the Institute of Materials International Rubber Conference, IRC 96, Manchester, UK, Paper No.1 (1996)Google Scholar
  6. 6.
    Duerden, E.: Plastics and rubber international. 11(3), 22 (1986)Google Scholar
  7. 7.
    Stern, H.J.: History, in Rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)Google Scholar
  8. 8.
    White, J.L.: Rubber processing: technology, materials and principles. Hanser Publishers, Munich (1995)Google Scholar
  9. 9.
    Stern, H.J.: History, in Rubber technology and manufacture. Blow, C. M. (ed.), Newnes-Butterworths, London (1977)Google Scholar
  10. 10.
    Famulok, T., Roch, P.: Proceedings of the Institute of Materials International Rubber Conference, IRC 96, Manchester, UK, Paper No.3, (1996)Google Scholar
  11. 11.
    Stern, H.J.: History, in rubber technology and manufacture. Blow, C. M. (ed.). Newnes-Butterworths, London (1977)Google Scholar
  12. 12.
    Kuzma, L.J.: Rubber technology, 3rd edn. Morton, M. (ed.). Van Nostrand Reinhold, New York (1987)Google Scholar
  13. 13.
    Stern, H.J.: History, in rubber technology and manufacture Blow, C. M. (ed.). Newnes-Butterworths, London (1977)Google Scholar
  14. 14.
    White, J.L.: Rubber processing: technology materials and principles. Hanser Publishers, Munich (1995)Google Scholar
  15. 15.
    Hertz, D.L.: Jr., Handbook of elastomers. Bhowmick A.K. and Stephens H.L. (ed.). Marcel Dekker Inc., New York (1988)Google Scholar
  16. 16.
    Bryant, C.L.: Acrylonitrile-Butadiene (Nitrile) Rubbers, in rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)Google Scholar
  17. 17.
    Hofmann, W.: Rubber technology handbook. Hanser Publishers, Munich (1989)Google Scholar
  18. 18.
    Rubber and Plastics News. 14(2), 21 (1984)Google Scholar
  19. 19.
    Blow, C.M.: Rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)Google Scholar
  20. 20.
    Rigbi, Z.: Reinforcement of rubber by carbon black. Adv. Polym. Sci. 36, 21–68 (1980)CrossRefGoogle Scholar
  21. 21.
    Yan, L.: Mullins effect recovery of a nanoparticle-filled polymer. J. Polym. Sci. Part B Polym. Phys. (2010)Google Scholar
  22. 22.
    Mark, J.E.: Monte carlo simulations on nanoparticles in elastomers. effects of the particles on the dimensions of the polymer chains and the mechanical properties of the networks. Macromol. Symp. 256(1), 40–47 (2007)Google Scholar
  23. 23.
    Mdarhri, A.: Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J. Appl. Phys. 101(8), 084111–084122 (2007)Google Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Treloar, L.R.G: The physics of rubber elasticity. Oxford University Press (2005)Google Scholar
  28. 28.
    Tsenoglou, C.: Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules. 22(1), 284–289 (1989)Google Scholar
  29. 29.
    Adolf D.: Origins of entanglement effects in rubber elasticity. Macromolecules 21(1), 228–230 (1988)CrossRefGoogle Scholar
  30. 30.
    Brereton, M.G., Filbrandt, M.: The contribution to rubber elasticity of topological entanglements. Polymer 26(8), 1134–1140 (1985)CrossRefGoogle Scholar
  31. 31.
    Goppel, J.M.: On the degree on crystallinity in natural rubber II. The orientation of the rubber crystallites in stretched samples. Appl. Sci. Res. 1(1), 18–26 (1949)CrossRefGoogle Scholar
  32. 32.
    Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: III Mechanical properties. Int. J. Solid. Struct. 37, 2811–2824 (2000)CrossRefGoogle Scholar
  33. 33.
    Nielsen, L.E., Stockton, F.D. : Theory of the modulus of crystalline polymers. J. Polym. Sci. Part A: General Papers, 1(6), 1995–2002 (1963)Google Scholar
  34. 34.
    DiBenedetto, T.: Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states. J. Polym. Sci. Part B: Polym. Phys. 25(9), 1949–1969 (1987)CrossRefGoogle Scholar
  35. 35.
    Sperling, L.H.: Introduction to physical polymer science, 4th edn. John Wiley (2006)Google Scholar
  36. 36.
    Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H.: Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523–9952 (2001)CrossRefGoogle Scholar
  37. 37.
    Boonstra, B.B.: Role of particulate fillers in elastomer reinforcement: a review. Polymer 20(6), 691–704 (1979)CrossRefGoogle Scholar
  38. 38.
    Fröhlich, J., Niedermeier, W., Luginsland, H.-D.: The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. A Appl. Sci. Manuf. 36(4), 449–460 (2005)CrossRefGoogle Scholar
  39. 39.
    Park, S-J., Cho, K-S.: Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 267(1), 86–91 (2003)CrossRefGoogle Scholar
  40. 40.
    Bekaert N.V.: Steelcord Catalogue. (1991)Google Scholar
  41. 41.
    Clark S K.: Chemical Technology. 41, 482 (1968)Google Scholar
  42. 42.
    Clark, S.K.: Mechanics of Pneumatic Tires, 2nd edn. US Department of Transport NHTSA, Washington DC (1981)Google Scholar
  43. 43.
    Evans, L.R., et al.: Use of precipitated silica to improvebrass-coated wire-to-rubber adhesion. 147th Rubber Division A.C.S. Paper No. 16, Spring (1995)Google Scholar
  44. 44.
    Goodyear, Tire and Rubber Co., Eur Pat. 902 046-A2 (1999)Google Scholar
  45. 45.
    Gough V.E.: Mechanics of pneumatic tires. US Dept. Transport. NHTSA. p. 204 Washington (1981)Google Scholar
  46. 46.
    Gough, V.E.: Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 1021 (1968)CrossRefGoogle Scholar
  47. 47.
    Hartman, D.R. Greenwood, M.E., Miller, D.M.: High strength glass fibers. Technical paper, Owens-Corning Fiberglas Corp. (1994)Google Scholar
  48. 48.
    van Ooij, W.J.: Mechanism and theories of rubber adhesion to steel tire cords. Rubber Chem. Technol. 57, 421–456 (1984)CrossRefGoogle Scholar
  49. 49.
    Williams M.L., Landell R. F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)Google Scholar
  50. 50.
    Ismail, H.: The potential of rubberwood as a filler in epoxidized natural rubber compounds. J. Elastomers Plast. 33, 34–46 (2010)Google Scholar
  51. 51.
    Pongdhorn, S-O., Sirisinha, C., Kannika H.,: Properties of natural rubber filled with ultra fine acrylate rubber powder. J. Elastomers Plast. 42, 139–150 (2010)CrossRefGoogle Scholar
  52. 52.
    Ryu, S.R., Lee, D.J.: Effects of interphase and short fiber on puncture and burst properties of short-fiber reinforced chloroprene rubber. J. Elastomers Plast. 42, 181–197 (2010)Google Scholar
  53. 53.
    Renata M.B. Fernandes, Leila L.Y. Visconte, and Regina C.R. Nunes: Characteristics of acrylic rubber composites with mica and carbon black. J. Elastomers Plast. 42, 65–74 (2010)Google Scholar
  54. 54.
    Jeong, D.S., Hong, C.K., Lim, G.T., Seo, G., and Ryu, C.S.: Networked silica with exceptional reinforcing performance for SBR compounds: interconnected by Methylene Diphenyl Diisocyanate. J. Elastomers Plast. 41, 353–368 (2009)Google Scholar
  55. 55.
    Shtarkova R. and Dishovsky N.: Elastomer-based microwave absorbing materials. J. Elastomers Plast. 41, 163–174 (2009)Google Scholar
  56. 56.
    Bulsari, P.M., Tzoganakis, C., Penlidis, A.: Hydrosilylation of Impact Polypropylene Co-polymer in a Twin-screw Extruder. J. Elastomers Plast. 40, 365–380 (2008)CrossRefGoogle Scholar
  57. 57.
    Faruk Yόkseler, R.: A theory for rubber-like shells. J. Elastomers Plast. 40, 39–60 (2008)CrossRefGoogle Scholar
  58. 58.
    Jayasree, T.K., Predeep, P.: Effect of fillers on mechanical properties of dynamically crosslinked styrene butadiene rubber/high density polyethylene blends. J. Elastomers Plast. 40, 127–146 (2008)CrossRefGoogle Scholar
  59. 59.
    Shinzo J., Yuko, I: Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem.Technol. 73(3), 534–550 (2000)Google Scholar
  60. 60.
    Woo, C-S., Kim, W-D., Lee, S-H., Choi, B-I., Park, H-S.: Fatigue life prediction of vulcanized natural rubber subjected to heat-aging. Procedia Eng. 1(1), 9–12 (2009)CrossRefGoogle Scholar
  61. 61.
    Cao, Y., Mou, H., Shen, F., Xu, H., Hu, G-H., Wu, C.: Hydrogenated nitrile butadiene rubber and hindered phenol composite. II. Characterization of hydrogen bonding. Polym. Eng. Sci. 51(1), 201–208 (2011)Google Scholar
  62. 62.
    Cao, Y., Shen, F., Mou, H., Cao, D., Xu, H., Wu, C.: Hydrogenated nitrile butadiene rubber and hindered phenol composite. I. Miscibility and dynamic mechanical property. Polym. Eng. Sci. 50(12), 2375–2381 (2010)Google Scholar
  63. 63.
    Blow, C.M.: Rubber technology and manufacture, Butterworth Scientific, London (1982)Google Scholar
  64. 64.
    Crawford, R.J.: Rotational molding of plastics, 2nd edn. p. 260. Research Studies Press, London (1996)Google Scholar
  65. 65.
    Dieter, G.E.: ASM Handbook, materials selection and design, vol 20. ASM International (1997)Google Scholar
  66. 66.
    Freakley, Philip K.: Rubber processing and production organization. Plenum Press, London (1985)Google Scholar
  67. 67.
    Grulke, Eric A.: Polymer process engineering, PTR Prentice Hall, Englewood Cliffs, NJ (1994)Google Scholar
  68. 68.
    Kresta, Jiri E.: Reaction injection molding. Am. Chem. Soc. (1985)Google Scholar
  69. 69.
    Harry, L: Basic compounding and processing of rubber. Am. Chem. Soc. (1985)Google Scholar
  70. 70.
    Mark, James E.: Science and technology of rubber. Academic Press, San Diego (1994)Google Scholar
  71. 71.
    Dawkins, J.V.: Developments in polymer characterization, vol. 1–5. Elsevier, New York (1986)Google Scholar
  72. 72.
    Booth, Price, C.: Comprehensive polymer science. Polymer characterization, vol. 1. Pergamon, New York (1989)Google Scholar
  73. 73.
    Yamakawa, H.: Modern theory of polymer solutions. Harper, New York (1971)Google Scholar
  74. 74.
    Flory, P.J.: Statistical mechanics of chain molecules. Oxford Univ. Press, New York (1969)Google Scholar
  75. 75.
    Tanaka, Y.: Rubber Chem. Technol. 64, 325 (1991)CrossRefGoogle Scholar
  76. 76.
    Campbell, White, J.: Polymer characterization. Chapman and Hall, New York (1989)Google Scholar
  77. 77.
    Baldwin, F.P., Ver Strate, G.: Rubber Chem. Technol. 44, 709 (1972)CrossRefGoogle Scholar
  78. 78.
    Hsu, S.L.: Handbook of vibrational spectroscopy: A companion for polymer scientists. Wiley, New York (2004)Google Scholar
  79. 79.
    Stuart, B.H.: Polymer Analysis. Wiley, New York (2002)Google Scholar
  80. 80.
    Koenig, J.L.: Spectroscopy of Polymers, 2nd edn. Elsevier, New York (1999)Google Scholar
  81. 81.
    Braun, Simple: Methods for Identification of Plastics, 3rd edn. Hanser, New York (1996)Google Scholar
  82. 82.
    Mitchell, J.: Applied polymer analysis and characterization, vol. 2. Hanser, New York (1992)Google Scholar
  83. 83.
    Collins., Bares, J., Billmeyer, F.: Experiments in polymer science, Wiley, New York (1973)Google Scholar
  84. 84.
    Tyler, W.: Rubber Chem. Technol. 40, 238 (1967)CrossRefGoogle Scholar
  85. 85.
    Ishida, H.: Rubber Chemical Technology 60, 497 (1987)CrossRefGoogle Scholar
  86. 86.
    Messerschmidt, R., Harthcock, M. (eds.): Infrared microspectroscopy, practical spectroscopy series, vol. 6. Marcel Dekker, New York (1988)Google Scholar
  87. 87.
  88. 88.
    Groover, M.P.: Fundamentals of modern manufacturing: materials, processes and systems, 3rd edn, Accédez directement à la nouvelle édition (2006)Google Scholar
  89. 89.
    Campbell, F.C.: Manufacturing process for advanced composites. p. 513. Elsevier, New York (2004)Google Scholar
  90. 90.
    Freakley, P.K.: Rubber processing and production organization. Adv. Mater. Process. 1(1), 53 (1985)Google Scholar
  91. 91.
    Leblanc, J.L.: Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27(4), 627–687 (2002)CrossRefGoogle Scholar
  92. 92.
    Thiruvarudchelvan, S.: Elastomers in metal forming: A review. J. Mater. Process. Technol. 39(1–2), 55–82 (1993)CrossRefGoogle Scholar
  93. 93.
    Michaeli, W.: Extrusion dies for plastics and rubber, design and engineering computations, 3rd edn, Hanser Gardner Publications Inc., (2003)Google Scholar
  94. 94.
    Brzoskowski, R., White, J.L., Szydlowski, W.: Air lubricated die for extrusion of rubber compounds, Gummi Fasern Kunstst, 42(7) 312, 314–317 (1989)Google Scholar
  95. 95.
    Song, H.J., White, J.L., Min, K., Nakajima, N., Weissert, F.C.: Rheological properties, extrudate swell, and die entry extrusion flow marker experiments for rubber-carbon black compounds. Adv. Polym. Technol. 8(4), 431–449 (1988)CrossRefGoogle Scholar
  96. 96.
    Isayev, A.I., Huang, Y.-H.: Unsteady flow of rubber compounds at injection molding conditions. Adv. Polym. Technol. 9(3), 167–180 (1989)CrossRefGoogle Scholar
  97. 97.
    Haberstroh, E., Wehr, H.: Rubber processing with gas-assisted injection moulding (R-GAIM). Macromol. Mater. Eng. 284–285(1), 76–80 (2000)CrossRefGoogle Scholar
  98. 98.
    Goettler, L.A.: The extrusion and performance of plasticized poly(vinyl chloride) hose reinforced with short cellulose fibers. Polym. Compos. 4, 249–255 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. K. Anifantis
    • 1
    Email author
  • S. K. Georgantzinos
    • 1
  • G. I. Giannopoulos
    • 1
  • P. A. Kakavas
    • 1
  1. 1.Machine Design Laboratory, Mechanical and Aeronautics Engineering DepartmentUniversity of PatrasPatrasGreece

Personalised recommendations