Advertisement

Physical Phenomena Related to Free Volumes in Rubber and Blends

  • A. J. MarzoccaEmail author
  • W. Salgueiro
  • A. Somoza
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 12)

Abstract

In the present chapter, different aspects related to free volumes and the physical phenomena involving free volumes in rubbers and blends are discussed. Experimental results were obtained using conventional experimental techniques (e.g. dynamic mechanical tests, differential scanning calorymetry and swelling) and principally a non-conventional one (positron annihilation lifetime spectroscopy—PALS). PALS has demonstrated a high capability to give direct information on free volumes. Due to its significant role in the study of nanoscopic effects in molecular systems (among them polymers), the physical grounds of the technique are explained. It is also illustrated how PALS detects free nanohole volumes and gives information on their changes as a consequence of different reactions induced in polymers. Based on the latest experience of the authors, some examples of PALS studies on NR and SBR rubbers and NR/SBR blends are presented. The results obtained are discussed using a modern scientific approach to the study of physicals processes in these elastomers; i.e. the analysis of the experimental information is given into the frame of well recognized theoretical models.

Keywords

Rubbers Blends Positron annihilation Free volume 

Notes

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2011-1088), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, SECAT (UNCentro) and University of Buenos Aires (Project UBACYT 2010–2012), Argentina.

References

  1. 1.
    Doolittle, A.K.: J. Appl. Phys. 22, 1031 (1951)CrossRefGoogle Scholar
  2. 2.
    Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)Google Scholar
  3. 3.
    Consolati, G.: Mater. Sci. Forum 363–365, 244 (2001)CrossRefGoogle Scholar
  4. 4.
    Victor, J.G., Torkelson, J.M.: Macromolecules 20, 2241 (1987)CrossRefGoogle Scholar
  5. 5.
    Suzuki, T., Yoshimizu, H., Tsujita, Y.: Polymer 44, 2975 (2003)Google Scholar
  6. 6.
    Bruno, G.V., Freed, J.H.: J. Phys. Chem. 78, 935 (1974)CrossRefGoogle Scholar
  7. 7.
    Curro, J.J., Roe, R.R.: Polymer 25, 1424 (1984)CrossRefGoogle Scholar
  8. 8.
    Jean, Y.C., Mallon, P.E., Schrader, D.M. (eds.): Principles and Applications of Positron and Positronium Chemistry. World-Scientific, London (2003)Google Scholar
  9. 9.
    Brandt, W., Dupasquier, A. (eds.): Positron Solid-State Physics., North- Holland, Amsterdam (1983)Google Scholar
  10. 10.
    Dupasquier, A., Kögel, G., Somoza, A.: Acta Mater. 52, 4707 (2004)CrossRefGoogle Scholar
  11. 11.
    Salgueiro, W., Somoza, A., Cabrera, O., Consolati, G.: Cem. Concr. Res. 34, 91 (2004)CrossRefGoogle Scholar
  12. 12.
    Jean, Y.C.: Microchem. J. 42, 72 (1990)CrossRefGoogle Scholar
  13. 13.
    Jean, Y.C.: Mater. Sci. Forum 59, 175 (1995)Google Scholar
  14. 14.
    Dlubek, G., Fretwell, H.M., Alam, M.A.: Macromolecules 33, 87 (2000)Google Scholar
  15. 15.
    Krause-Rehberg, R., Leipner, H.S.: Positron Annihilation in Semiconductors. Springer, Berlin (1999)CrossRefGoogle Scholar
  16. 16.
    Dupasquier A., Mills, A.P. Jr (eds.): Positron Spectroscopy of Solids. IOP Press, Amsterdam (1995)Google Scholar
  17. 17.
    Dlubek, G., Clarke, A.P., Fretwell, H.M., Dugdale, S.B., Alam, M.A.: Phys. Stat. Sol. (a) 157, 351 (1996)CrossRefGoogle Scholar
  18. 18.
    Hristov, H.A., Bolan, B., Lee, A.F., Xie, L., Gidley, D.G.: Macromolecules 29, 8507 (1996)CrossRefGoogle Scholar
  19. 19.
    Li, H.-L., Ujihira, Y., Yoshino, T., Yoshii, K., Yamashita, T., Horie, K.: Polymer 39, 4075 (1998)CrossRefGoogle Scholar
  20. 20.
    Tao, S.J.: J. Chem. Phys. 56(1972), 5499 (1972)CrossRefGoogle Scholar
  21. 21.
    Eldrup, M., Lightbody, D., Sherwood, N.J.: Chem. Phys. 63, 51 (1981)CrossRefGoogle Scholar
  22. 22.
    Nakanishi H., Wang Y.Y., Jean Y.C., Sharma S.C. (eds.): Positron Annihilation Studies of Fluids, p. 292. World Scientific, Singapore (1988)Google Scholar
  23. 23.
    Kanaya, T., Tsukushi, T., Kaji, K., Bartos, J., Kristiak, J.: Phys. Rev. E 60, 1906 (1999)CrossRefGoogle Scholar
  24. 24.
    Gregory, R.B.: J.Appl.Phys. 70, 4665 (1991)CrossRefGoogle Scholar
  25. 25.
    Marzocca, A.J., Cerveny, S., Salgueiro, W., Somoza, A., Gonzalez, L.: Phys. Rev. E 65, 021801 (1-5) (2002)Google Scholar
  26. 26.
    Srithawatpong, R., Peng, Z.L., Olson, B.G., Jamieson, A.M., Simha, R., McGerwey, J.D., Maier, T.M., Halasa, A.F., Ishida, H.: J. Polym. Sci., Part B: Polym. Phys. 37, 2754 (1999)CrossRefGoogle Scholar
  27. 27.
    Simha, R., Somcynsky, T.: Macromolecules 2, 342 (1969)CrossRefGoogle Scholar
  28. 28.
    Simha, R., Wilson, P.S., Olabisi, O.: Kolloid-Z. Z. Polym. 251, 402 (1973)CrossRefGoogle Scholar
  29. 29.
    Bondi, A.A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York (1968) (ch. 14)Google Scholar
  30. 30.
    Ferry, J.D.: Viscoelastic Properties of Polymers, p. 264. Wiley, New York (1980) (Cap.11)Google Scholar
  31. 31.
    Bartoš, J., Bandžuch, P., Šauša, O., Krištiaková, K., Krištiak, J., Kanaya, T., Jenninger, W.: Macromolecules 30(22), 6906–6912 (1997)Google Scholar
  32. 32.
    Bartoš, J., Colloid, J.: Polym. Sci. 274, 14 (1996)Google Scholar
  33. 33.
    Bandžuch, P., Krištiak, J., Šauša, O., Zrubcová, J.: Phys Rev B 61, 8784 (2000)CrossRefGoogle Scholar
  34. 34.
    Wanga, Z.F., Wang, B., Qi, N., Zhang, H.F., Zhang, L.Q.: Polymer 46, 719 (2005)CrossRefGoogle Scholar
  35. 35.
    Wang, J., Vicent, J., Quarles, C.A.: Nucl Instrum Methods Phys Res B 241, 271–275 (2005)CrossRefGoogle Scholar
  36. 36.
    Mohsen, M., Abd-El Salam, M.H., Ashry, A., Ismail, A., Ismail, H.: Polym. Degrad. Stab. 87, 381–388 (2005)CrossRefGoogle Scholar
  37. 37.
    Jobando, V.O., Quarles, C.A.: Phys. Stat. Sol. (c) 4, 3767 (2007)CrossRefGoogle Scholar
  38. 38.
    Akiba, M., Hashim, S.: Prog. Polym. Sci. 22, 475 (1997)CrossRefGoogle Scholar
  39. 39.
    Marzocca, A.J., Mansilla, M.A.: J. Appl. Polym. Sci. 103, 1105 (2007)CrossRefGoogle Scholar
  40. 40.
    Mason, P.: Polymer 5, 625 (1964)CrossRefGoogle Scholar
  41. 41.
    Coran, A.Y.: In: Mark, J.E., Erman, B., Eirich, F.R., (eds.) Science and Technology of Rubber, p. 339. Academic Press, San Diego (1978)Google Scholar
  42. 42.
    Salgueiro, W., Marzocca, A.J., Somoza, A., Consolati, G., Cerveny, S., Quasso, F., Goyanes, S.: Polymer 45, 6037 (2004)Google Scholar
  43. 43.
    Gronsky, W., Hoffman, U., Simon, G., Wutzler, A., Straube, E.: Rubber Chem. Technol. 65, 63 (1992)CrossRefGoogle Scholar
  44. 44.
    Flory, P.J., Rehner, J.: J Chem Phys 11, 512 (1943)CrossRefGoogle Scholar
  45. 45.
    Flory, P.J., Rehner, J.: J. Chem. Phys. 11, 521 (1943)Google Scholar
  46. 46.
    Mark, J.E., Erman, B.: Rubberlike Elasticity: A Molecular Primer, p. 51. Wiley, New York (1988)Google Scholar
  47. 47.
    Strobl, G.: The Physics of Polymers, 2nd edn. Springer, Berlin (1997)Google Scholar
  48. 48.
    Coran, A.Y.: Rubber Chem. Technol. 61, 281 (1988)CrossRefGoogle Scholar
  49. 49.
    Utracki, L.A.: Polym. Eng. Sci. 23, 602 (1983)CrossRefGoogle Scholar
  50. 50.
    Turi, E.A.: Thermal Characterization of Polymeric Materials. Academic Press, New York (1997)Google Scholar
  51. 51.
    Sakaguchi, T., Taniguchi, N., Urakawa, O., Adachi, K.: Macromolecules 38, 422 (2005)CrossRefGoogle Scholar
  52. 52.
    Zhao, J., Ediger, M.D., Sun, Y., Yu, L.: Macromolecules 42, 6777 (2009)CrossRefGoogle Scholar
  53. 53.
    Peng, Z.L., Olson, B.G., Srithawatpong, R., McGervey, J.D., Jamieson, A.M., Ishida, H., Meier, T.M., Halasa, A.F.: J. Polym. Sci., Part B: Polym. Phys. 36, 861 (1998)CrossRefGoogle Scholar
  54. 54.
    Kovacs, A.J.: Adv. Polymer Sci. 3, 394 (1963)CrossRefGoogle Scholar
  55. 55.
    Akiyama, S., Kawahara, S., Akiba, I., Iio, S., Li, H.-L., Ujihira, Y.: Polym. Bull. 45, 275 (2000)CrossRefGoogle Scholar
  56. 56.
    Salgueiro, W., Somoza, A., Marzocca, A.J., Torriani, I., Mansilla, M.A.: J. Polym. Sci., Part B: Polym. Phys. 47, 2320 (2009)CrossRefGoogle Scholar
  57. 57.
    Goyanes, S., Lopez, C.C., Rubiolo, G.H., Quasso, F., Marzocca, A.J.: Eur. Polym. J. 44, 1525 (2008)CrossRefGoogle Scholar
  58. 58.
    Salgueiro, W., Somoza, A., Consolati, G., Quasso, F., Marzocca, A.J.: Phys. Stat. Sol. (c) 10, 3771 (2007)CrossRefGoogle Scholar
  59. 59.
    Ito, Y., Mohamed, H.F.M., Tanaka, K., Okamoto, K., Lee, K.: J. Radioanal. Nucl. Chem. 211, 211 (1996)CrossRefGoogle Scholar
  60. 60.
    Bartoš, J., Šauša, O., Krištiak, J., Blochowicz, T., Rössler, E.: J. Phys.: Condens. Matter 13, 11473 (2001)CrossRefGoogle Scholar
  61. 61.
    Bartoš, J., Šauša, O., Bandzuch, P., Zrubcová, J., Krištiak, J.: J. Non-Crystal. Solids 307–310, 417 (2002)CrossRefGoogle Scholar
  62. 62.
    Winberg, P., Eldrup, M., Maurer, F.H.J.: Polymer 45, 8253 (2004)CrossRefGoogle Scholar
  63. 63.
    McCrum, N.G., Read, B.E., Williams, G.: Anelastic and Dielectric Effects in Polymer Solids. Wiley, London (1967)Google Scholar
  64. 64.
    Ngai, K.L.: J. Phys.: Condens. Matter 15, 1107 (2003)CrossRefGoogle Scholar
  65. 65.
    Ghilarducci, A., Salva, H., Marzocca, A.J.: J. Appl. Polym. Sci. 113, 2361 (2009)CrossRefGoogle Scholar
  66. 66.
    Mallon, P.E., McGill, W.J.: J. Appl. Polym. Sci. 74, 1250 (1999)CrossRefGoogle Scholar
  67. 67.
    Salgueiro, W., Somoza, A., Silva, L., Consolatti, G., Quasso, F., Mansilla M.A., Marzocca, A.J.: Phys. Rev. E. 85, 51805 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LP&MC, Facultad de Ciencias Exactas y Naturales, Departamento de FísicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.IFIMATUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina
  3. 3.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresBuenos AiresArgentina

Personalised recommendations