Skip to main content

Advances in Elastomers: Their Composites and Nanocomposites: State of Art, New Challenges and Opportunities

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 12))

Abstract

The field of elastomers, their composites and nanocomposites has gained a lot of interest in recent years. These composite materials have great significance both from the fundamental and application point of view. Since this field is growing at a faster rate, it is always necessary to address the structure, properties and applicability of such materials. The present chapter gives a brief account on various elastomer systems, their composites and nanocomposites. Various topics such as elastomer based macrocomposites, nanocomposites, interphase modification, compatiblisation of rubber based nanocomposites, fully green elastomer nanocomposites, elastomeric micro and nanocomposites for tyre applications, elastomer based bionanocomposites, bio-medical applications of elastomeric composites and nanocomposites have been very briefly discussed. Finally the applications, new challenges and opportunities of these composites and nanocomposites are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hertz Jr, D.L.: Handbook of elastomers. In: Bhowmick, A.K., Stephens, H.L. (eds.) Marcel Dekker Inc., New York (1988)

    Google Scholar 

  2. Bryant, C.L.: Acrylonitrile-Butadiene (Nitrile) rubbers. In: Blow, C.M. (ed.) Rubber Technology and Manufacture. Newnes-Butterworths, London (1977)

    Google Scholar 

  3. Hofmann, W.: Rubber Technology Handbook, Hanser Publishers, Munich (1989). Rubber Plast. News 14, 2, 21 (1984)

    Google Scholar 

  4. Blow, C.M. (ed.): Rubber Technology and Manufacture. Newnes-Butterworths, London (1977)

    Google Scholar 

  5. Rigbi, Z.: Reinforcement of rubber by carbon black. Adv. Polym. Sci. 36, 21–68 (1980)

    Article  CAS  Google Scholar 

  6. Geethamma, V.G., Joseph, R., Thomas, S.: Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci. 55, 583–594 (1995)

    Article  CAS  Google Scholar 

  7. Geethamma, V.G., Pothen, L.A., Rao, B., Neelakantan, N.R., Thomas, S.: Tensile stress relaxation of short-coir-fiber-reinforced natural rubber composites. J. Appl. Polym. Sci. 94, 96–104 (2004)

    Article  CAS  Google Scholar 

  8. Geethamma, V.G., Kalaprasad, G., Groeninckx, G., Thomas, S.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. A 36(11), 1499–1506 (2005)

    Article  Google Scholar 

  9. Geethamma, V.G., Thomas, S.: Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym. Compos. 26(2), 136–143 (2005)

    Article  CAS  Google Scholar 

  10. Das, D., Datta, M., Chavan, R.B., Datta, S.K.: Coating of jute with natural rubber. J. Appl. Polym. Sci. 98(5), 484–489 (2005)

    Article  CAS  Google Scholar 

  11. Nashar, D.E.El.,Abd-El-Messieh, S.L.,Basta, A.H.: Newsprint paper waste as a fiber reinforcement in rubber composites. J. Appl. Polym. Sci. 91, 3410–3420 (2004)

    Google Scholar 

  12. Sadhu, S., Bhowmick, A.K.: Rubber Chem. Technol. 76, 860–875 (2003)

    Google Scholar 

  13. Magaraphan, R., Thaijaroen, W., Lim-Ochakun, R.: Rubber Chem. Technol. 76, 406–418 (2003)

    Article  CAS  Google Scholar 

  14. Bokobza, L.: Polymer 48, 4907–4920 (2007)

    Google Scholar 

  15. Bai, X., Wan, C., Zhang, Y., Zhai, Y.: Carbon 49, 1608–1613 (2011)

    Article  CAS  Google Scholar 

  16. Boonstra, B.B.: Role of particulate fillers in elastomer reinforcement: a review. Polymer 20(6), 691–704 (1979)

    Article  CAS  Google Scholar 

  17. Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: J. Polym. Sci. B 40, 2065–2072 (2002)

    Article  CAS  Google Scholar 

  18. Fröhlich, J., Niedermeier, W., Luginsland, H.D.: The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. A Appl. Sci. Manuf. 36(4), 449–460 (2005)

    Article  Google Scholar 

  19. Park, Soo-Jin, Cho, Ki-Sook: Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 267(1), 86–91 (2003)

    Article  CAS  Google Scholar 

  20. Bokobza, L.: J. Appl. Polym. Sci. 93, 2095–2104 (2004)

    Google Scholar 

  21. Faisant, J.B., Ait-Kadi, A., Bousmina, M., Deschênes, L.: Polymer 39, 533–545 (1998)

    Article  CAS  Google Scholar 

  22. Willis, J.M., Caldas, V., Favis, B.D.: J. Mater. Sci. 26, 4742–4750 (1991)

    Article  CAS  Google Scholar 

  23. Dagli, S.S., Xanthos, M., Biesenberger, J.A.: Emerging technologies in plastics recycling. In: Andrews, G.D., Subramanian, P.M. (eds.) ACS Symposium Series, 513 Chapter 19 (1992)

    Google Scholar 

  24. Hikasa, S., Nagata, K., Miyahara, K., Izumi, T., Suda, T., Toyohara, A., Kato, A., Nakamura, Y.: J. Appl. Polym. Sci. 114, 919–927 (2009)

    Article  CAS  Google Scholar 

  25. Dufresne, A.: Cellulose-based composites and nanocomposites. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 401–418. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  26. Zhou, Q., Zhang, L., Zhang, M., Wang, B., Wang, S.: Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane. Polymer 44, 1733–1739 (2003)

    Article  CAS  Google Scholar 

  27. Yoshioka, M., Hagiwara, N., Shiraishi, N.: Thermoplasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6, 193–212 (1999)

    Article  CAS  Google Scholar 

  28. Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A., Sheikh, M.A.: Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)

    Article  CAS  Google Scholar 

  29. Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatshefte für Chemie/Chemical Monthly 141, 653–659 (2010)

    Article  CAS  Google Scholar 

  30. Rao, V., Johns, J.: Thermal behavior of chitosan/natural rubber latex blends: TG and DSC analysis. J. Therm. Anal. Calorim. 92, 801–806 (2008)

    Article  CAS  Google Scholar 

  31. Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J. Appl. Polym. Sci. 112, 3157–3165 (2009)

    Article  CAS  Google Scholar 

  32. Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I.: Properties of lignin–polyurethane films prepared by casting method. Ind. Crops Prod. 20, 231–241 (2004)

    Article  CAS  Google Scholar 

  33. Belgacem, M.N., Gandini, A.: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, p. 553 (2008)

    Google Scholar 

  34. Darder, M., Aranda, P., Hitzky, E.R.: Adv. Mater. 19(10), 1309 (2007)

    Google Scholar 

  35. Darder, M., Colilla, M., Hitzky, E.R.: Chem. Mater. 15, 3774 (2003)

    Article  CAS  Google Scholar 

  36. Wu, W., Henrikson, M., Liu, X., Berglund, L.A.: Biomacromolecules 8(12), 3687 (2007)

    Google Scholar 

  37. Wang, Y., Tian, H., Zhang, L.: Carbohydr. Polym. 80, 665 (2010)

    Article  CAS  Google Scholar 

  38. Zuber, M., Zia, K.M., Mahboob, S., Hassain, M.: Int. J. Biol. Macromol. 47, 196 (2010)

    Article  CAS  Google Scholar 

  39. Leblanc, J.L.: Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27(4), 627–687 (2002)

    Article  CAS  Google Scholar 

  40. Gopi, J.A., Patel, S.K., Chandra, A K., Tripathi, D.K.: J. polym. Res. 18, 1625–1634 (2011)

    Google Scholar 

  41. Chandra, A K.: Nano materials for rubber/tyre application paper presented at the International conference on innovation in technologies for processing of rubber & elastomer, Ramada Palm Grove, Juhu, 26–27 Oct 2012

    Google Scholar 

  42. Avérous, L.: Biodegradable multiphase systems based on plasticized starch: a review. J. Macromol. Sci. C C44, 231–274 (2004)

    Google Scholar 

  43. Wang, X.L., Yang, K.K., Wang, Y.Z.: Properties of starch blends with biodegradable polymers. J. Macromol. Sci. C C43, 385–409 (2003)

    Google Scholar 

  44. Yu, L., Dean, K., Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 502–576 (2006)

    Article  CAS  Google Scholar 

  45. Shi, R., Chen, D., Li, Q., Wu, Y., Xu, X., Zhang, L., Tian, W.: Int. J. Mol. Sci. 10, 4223 (2009)

    Article  CAS  Google Scholar 

  46. Christenson, E.M., Wiggins, M.J., Anderson, J.M., Hiltner, A.: Surface modification of poly(ether urethane urea with modified dehydroepiandrosterone for improved in vivo biostability). J. Biomed. Mater. Res. 73A, 108–115 (2005)

    Article  CAS  Google Scholar 

  47. Gunatillake, P.A., Martin, D.J., Meijs, G.F.: Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 56, 545–557 (2003)

    Article  CAS  Google Scholar 

  48. Khorasani, M.T., Zaghiyan, M., Mirzadeh, H.: Ultra high molecular weight polyethylene and polydimethylsiloxane blend as acetabular cup material. Colloids Surf B 41, 169–174 (2005)

    Article  CAS  Google Scholar 

  49. Onatea, J.I., Comin, M., Bracerasa, I.: Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surf. Coat. Technol. 142–144, 1056–1062 (2001)

    Article  Google Scholar 

  50. Barr, S., Bayat, A.: Current implant surface technology: an examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. ePlasty 9, 22 (2009)

    Google Scholar 

  51. Barr, S., Hill, E., Bayat, A.: Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies. Eplasty 10, 246–268 (2010)

    Google Scholar 

  52. Kanyanta, V., Ivankovic, A.: Mechanical characterisation of polyurethane elastomer for biomedical applications. J. Mech. Behav. Biomater. 3, 51–62 (2010)

    Article  Google Scholar 

  53. Colas, A., Curtis, J.: Biomaterials Science High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, Elsevier (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Visakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deepalekshmi, P., Visakh, P.M., Mathew, A.P., Chandra, A.K., Thomas, S. (2013). Advances in Elastomers: Their Composites and Nanocomposites: State of Art, New Challenges and Opportunities. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers II. Advanced Structured Materials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20928-4_1

Download citation

Publish with us

Policies and ethics