Advances in Elastomers: Their Composites and Nanocomposites: State of Art, New Challenges and Opportunities

  • P. Deepalekshmi
  • P. M. VisakhEmail author
  • Aji. P. Mathew
  • Arup K. Chandra
  • Sabu Thomas
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 12)


The field of elastomers, their composites and nanocomposites has gained a lot of interest in recent years. These composite materials have great significance both from the fundamental and application point of view. Since this field is growing at a faster rate, it is always necessary to address the structure, properties and applicability of such materials. The present chapter gives a brief account on various elastomer systems, their composites and nanocomposites. Various topics such as elastomer based macrocomposites, nanocomposites, interphase modification, compatiblisation of rubber based nanocomposites, fully green elastomer nanocomposites, elastomeric micro and nanocomposites for tyre applications, elastomer based bionanocomposites, bio-medical applications of elastomeric composites and nanocomposites have been very briefly discussed. Finally the applications, new challenges and opportunities of these composites and nanocomposites are also discussed.


Polylactic Acid Natural Rubber Maleic Anhydride Filler Particle Styrene Butadiene Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hertz Jr, D.L.: Handbook of elastomers. In: Bhowmick, A.K., Stephens, H.L. (eds.) Marcel Dekker Inc., New York (1988)Google Scholar
  2. 2.
    Bryant, C.L.: Acrylonitrile-Butadiene (Nitrile) rubbers. In: Blow, C.M. (ed.) Rubber Technology and Manufacture. Newnes-Butterworths, London (1977)Google Scholar
  3. 3.
    Hofmann, W.: Rubber Technology Handbook, Hanser Publishers, Munich (1989). Rubber Plast. News 14, 2, 21 (1984)Google Scholar
  4. 4.
    Blow, C.M. (ed.): Rubber Technology and Manufacture. Newnes-Butterworths, London (1977)Google Scholar
  5. 5.
    Rigbi, Z.: Reinforcement of rubber by carbon black. Adv. Polym. Sci. 36, 21–68 (1980)CrossRefGoogle Scholar
  6. 6.
    Geethamma, V.G., Joseph, R., Thomas, S.: Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci. 55, 583–594 (1995)CrossRefGoogle Scholar
  7. 7.
    Geethamma, V.G., Pothen, L.A., Rao, B., Neelakantan, N.R., Thomas, S.: Tensile stress relaxation of short-coir-fiber-reinforced natural rubber composites. J. Appl. Polym. Sci. 94, 96–104 (2004)CrossRefGoogle Scholar
  8. 8.
    Geethamma, V.G., Kalaprasad, G., Groeninckx, G., Thomas, S.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. A 36(11), 1499–1506 (2005)CrossRefGoogle Scholar
  9. 9.
    Geethamma, V.G., Thomas, S.: Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym. Compos. 26(2), 136–143 (2005)CrossRefGoogle Scholar
  10. 10.
    Das, D., Datta, M., Chavan, R.B., Datta, S.K.: Coating of jute with natural rubber. J. Appl. Polym. Sci. 98(5), 484–489 (2005)CrossRefGoogle Scholar
  11. 11.
    Nashar, D.E.El.,Abd-El-Messieh, S.L.,Basta, A.H.: Newsprint paper waste as a fiber reinforcement in rubber composites. J. Appl. Polym. Sci. 91, 3410–3420 (2004)Google Scholar
  12. 12.
    Sadhu, S., Bhowmick, A.K.: Rubber Chem. Technol. 76, 860–875 (2003)Google Scholar
  13. 13.
    Magaraphan, R., Thaijaroen, W., Lim-Ochakun, R.: Rubber Chem. Technol. 76, 406–418 (2003)CrossRefGoogle Scholar
  14. 14.
    Bokobza, L.: Polymer 48, 4907–4920 (2007)Google Scholar
  15. 15.
    Bai, X., Wan, C., Zhang, Y., Zhai, Y.: Carbon 49, 1608–1613 (2011)CrossRefGoogle Scholar
  16. 16.
    Boonstra, B.B.: Role of particulate fillers in elastomer reinforcement: a review. Polymer 20(6), 691–704 (1979)CrossRefGoogle Scholar
  17. 17.
    Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: J. Polym. Sci. B 40, 2065–2072 (2002)CrossRefGoogle Scholar
  18. 18.
    Fröhlich, J., Niedermeier, W., Luginsland, H.D.: The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. A Appl. Sci. Manuf. 36(4), 449–460 (2005)CrossRefGoogle Scholar
  19. 19.
    Park, Soo-Jin, Cho, Ki-Sook: Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 267(1), 86–91 (2003)CrossRefGoogle Scholar
  20. 20.
    Bokobza, L.: J. Appl. Polym. Sci. 93, 2095–2104 (2004)Google Scholar
  21. 21.
    Faisant, J.B., Ait-Kadi, A., Bousmina, M., Deschênes, L.: Polymer 39, 533–545 (1998)CrossRefGoogle Scholar
  22. 22.
    Willis, J.M., Caldas, V., Favis, B.D.: J. Mater. Sci. 26, 4742–4750 (1991)CrossRefGoogle Scholar
  23. 23.
    Dagli, S.S., Xanthos, M., Biesenberger, J.A.: Emerging technologies in plastics recycling. In: Andrews, G.D., Subramanian, P.M. (eds.) ACS Symposium Series, 513 Chapter 19 (1992)Google Scholar
  24. 24.
    Hikasa, S., Nagata, K., Miyahara, K., Izumi, T., Suda, T., Toyohara, A., Kato, A., Nakamura, Y.: J. Appl. Polym. Sci. 114, 919–927 (2009)CrossRefGoogle Scholar
  25. 25.
    Dufresne, A.: Cellulose-based composites and nanocomposites. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 401–418. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  26. 26.
    Zhou, Q., Zhang, L., Zhang, M., Wang, B., Wang, S.: Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane. Polymer 44, 1733–1739 (2003)CrossRefGoogle Scholar
  27. 27.
    Yoshioka, M., Hagiwara, N., Shiraishi, N.: Thermoplasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6, 193–212 (1999)CrossRefGoogle Scholar
  28. 28.
    Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A., Sheikh, M.A.: Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)CrossRefGoogle Scholar
  29. 29.
    Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatshefte für Chemie/Chemical Monthly 141, 653–659 (2010)CrossRefGoogle Scholar
  30. 30.
    Rao, V., Johns, J.: Thermal behavior of chitosan/natural rubber latex blends: TG and DSC analysis. J. Therm. Anal. Calorim. 92, 801–806 (2008)CrossRefGoogle Scholar
  31. 31.
    Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J. Appl. Polym. Sci. 112, 3157–3165 (2009)CrossRefGoogle Scholar
  32. 32.
    Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I.: Properties of lignin–polyurethane films prepared by casting method. Ind. Crops Prod. 20, 231–241 (2004)CrossRefGoogle Scholar
  33. 33.
    Belgacem, M.N., Gandini, A.: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, p. 553 (2008)Google Scholar
  34. 34.
    Darder, M., Aranda, P., Hitzky, E.R.: Adv. Mater. 19(10), 1309 (2007)Google Scholar
  35. 35.
    Darder, M., Colilla, M., Hitzky, E.R.: Chem. Mater. 15, 3774 (2003)CrossRefGoogle Scholar
  36. 36.
    Wu, W., Henrikson, M., Liu, X., Berglund, L.A.: Biomacromolecules 8(12), 3687 (2007)Google Scholar
  37. 37.
    Wang, Y., Tian, H., Zhang, L.: Carbohydr. Polym. 80, 665 (2010)CrossRefGoogle Scholar
  38. 38.
    Zuber, M., Zia, K.M., Mahboob, S., Hassain, M.: Int. J. Biol. Macromol. 47, 196 (2010)CrossRefGoogle Scholar
  39. 39.
    Leblanc, J.L.: Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27(4), 627–687 (2002)CrossRefGoogle Scholar
  40. 40.
    Gopi, J.A., Patel, S.K., Chandra, A K., Tripathi, D.K.: J. polym. Res. 18, 1625–1634 (2011)Google Scholar
  41. 41.
    Chandra, A K.: Nano materials for rubber/tyre application paper presented at the International conference on innovation in technologies for processing of rubber & elastomer, Ramada Palm Grove, Juhu, 26–27 Oct 2012Google Scholar
  42. 42.
    Avérous, L.: Biodegradable multiphase systems based on plasticized starch: a review. J. Macromol. Sci. C C44, 231–274 (2004)Google Scholar
  43. 43.
    Wang, X.L., Yang, K.K., Wang, Y.Z.: Properties of starch blends with biodegradable polymers. J. Macromol. Sci. C C43, 385–409 (2003)Google Scholar
  44. 44.
    Yu, L., Dean, K., Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 502–576 (2006)CrossRefGoogle Scholar
  45. 45.
    Shi, R., Chen, D., Li, Q., Wu, Y., Xu, X., Zhang, L., Tian, W.: Int. J. Mol. Sci. 10, 4223 (2009)CrossRefGoogle Scholar
  46. 46.
    Christenson, E.M., Wiggins, M.J., Anderson, J.M., Hiltner, A.: Surface modification of poly(ether urethane urea with modified dehydroepiandrosterone for improved in vivo biostability). J. Biomed. Mater. Res. 73A, 108–115 (2005)CrossRefGoogle Scholar
  47. 47.
    Gunatillake, P.A., Martin, D.J., Meijs, G.F.: Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 56, 545–557 (2003)CrossRefGoogle Scholar
  48. 48.
    Khorasani, M.T., Zaghiyan, M., Mirzadeh, H.: Ultra high molecular weight polyethylene and polydimethylsiloxane blend as acetabular cup material. Colloids Surf B 41, 169–174 (2005)CrossRefGoogle Scholar
  49. 49.
    Onatea, J.I., Comin, M., Bracerasa, I.: Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surf. Coat. Technol. 142–144, 1056–1062 (2001)CrossRefGoogle Scholar
  50. 50.
    Barr, S., Bayat, A.: Current implant surface technology: an examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. ePlasty 9, 22 (2009)Google Scholar
  51. 51.
    Barr, S., Hill, E., Bayat, A.: Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies. Eplasty 10, 246–268 (2010)Google Scholar
  52. 52.
    Kanyanta, V., Ivankovic, A.: Mechanical characterisation of polyurethane elastomer for biomedical applications. J. Mech. Behav. Biomater. 3, 51–62 (2010)CrossRefGoogle Scholar
  53. 53.
    Colas, A., Curtis, J.: Biomaterials Science High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, Elsevier (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Deepalekshmi
    • 1
    • 2
  • P. M. Visakh
    • 1
    • 2
    • 3
    Email author
  • Aji. P. Mathew
    • 3
  • Arup K. Chandra
    • 4
  • Sabu Thomas
    • 1
    • 2
  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  3. 3.Department of Applied Physics and Mechanical Engineering Division of Wood and Bionanocomposites LuleåUniversity of TechnologyLuleåSweden
  4. 4.R&D CentreApollo Tyres Ltd.VadodaraIndia

Personalised recommendations