Skip to main content

Special Purpose Elastomers: Synthesis, Structure-Property Relationship, Compounding, Processing and Applications

  • Chapter
  • First Online:
Advances in Elastomers I

Abstract

Elastomers are notable as very special class of polymers due to their multifunctional applications. The superior mechanical properties, high flexibility, resilience and good viscoelastic behaviour make this class applicable in a wide range of technology and industry. Depending on the various properties and general applications elastomers are classified in to a number of categories. This particular chapter deals with a very important class of special purpose elastomers. The synthesis, structure, different properties, mode of vulcanization, processing and applications of most of the synthetic elastomers are discussed. Apart from providing a basic understanding about the materials, this chapter can facilitate wide information about the technical details and industrial importance of this class of rubbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puskas, J.E., Wilson, G., Duffy, J.: Synthesis of Butyl Rubber by cationic polymerization. Ullman’s Encycl. Ind. Chem. A23, 51–57 (1998)

    Google Scholar 

  2. Kaszas, G., Puskas., J.E.; Baade, W.: Butyl and Halobutyl rubbers. Polym. Mater. Encycl. (1996)

    Google Scholar 

  3. Robinson, K.J., Feniak, G., Walker, J.: Proceedings of International Rubber Conference, Prague, 1973

    Google Scholar 

  4. Vukov, R.: Zinc Oxide crosslinking chemistry of Halobutyl Elastomers–a model compound approach. Rubber Chem. Technol. 57, 284–290 (1984)

    Article  CAS  Google Scholar 

  5. Scott, J., Greg. D.F., Whitney R.A.: Amine substitution reactions of brominated poly(isobutylene-co-isoprene): new chemical modification and cure chemistry. Macromolecules 35, 3374–3379 (2002)

    Google Scholar 

  6. Baldwin, F.P., Buckley, D.J., Kuntz, I., Robison, S.B.: Rubber Plastics Age 42, 500 (1961)

    Google Scholar 

  7. Scagliusi, S. R., Cardoso, E. L.C., Lugao, A. B.: Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems. Rad. Phys. Chem. 81(9), 1370–1373 (2012)

    Google Scholar 

  8. Razzaghi-Kashani, M., Kokabi, M.: Improvement in physical and mechanical properties of Butyl Rubber with montmorillonite organo-clay. Iranian Polym. J. 16(10), 671–679 (2007)

    Google Scholar 

  9. Morrison, N.J.: The formation of crosslink precursors in the sulfur vulcanization of natural rubber. Rubber Chem. Technol. 57, 97–103 (1984)

    Article  CAS  Google Scholar 

  10. Ghosh, P., Katare, S., Patkar, P., Caruthers, J.M., Subramaniah, V.V.: Sulphur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a reactional kinetic model. Rubber Technol. Handb., 2nd edn. New York: Hanser Publishers 76, 592–693 (2003)

    Google Scholar 

  11. Morgan, B., Mcgill, W.J.: Benzothiazole-accelerated sulfur vulcanization. IV. Effect of ZnO and bis(2-mercaptobenzothiazole)zinc(II) on 2-bisbenzothiazole-2,2′-polysulfide formation in 2-bisbenzothiazole-2,2′-disulfide and 2-bisbenzothiazole-2,2-disulfide/sulfur. J. Appl. Polym. Sci. 76, 1405 (2000)

    Google Scholar 

  12. Chu, C.C., Vukov, R.: Determination of the structure of butyl rubber by NMR spectroscopy. Macromolecules 18, 1423–1430 (1985)

    Article  CAS  Google Scholar 

  13. Chu, C.C., Watson, K.N., Vukov, R.: Determination of the structure of chlorobutyl and bromobutyl rubber by NMR spectroscopy. Rubber Chem. Technol. 60, 636–646 (1987)

    Google Scholar 

  14. Lautenschlaeger, F.K.: Model compound vulcanization-part I. Basic studies. Rubber Chem. Technol. 52, 213–231 (1979)

    Article  CAS  Google Scholar 

  15. McSweeney, G.P., Morrison, N.J.: The thermal stability of monosulfidic crosslinks in natural rubber. Rubber Chem. Technol. 56, 337–343 (1983)

    Google Scholar 

  16. Skinner, T.D.: The CBS-accelerated sulfuration of natural rubber and cis-1, 4-polybutadiene. Rubber Chem. Technol. 45, 182–192 (1972)

    Article  CAS  Google Scholar 

  17. Gregg, E.C., Lattimer, R.P.: Polybutadiene vulcanization. Chemical structures from sulfur-donor vulcanization of an accurate model. Rubber Chem. Technol. 57, 1056–1097 (1984)

    Google Scholar 

  18. Kuntz, I., Zapp, R.L., Pancirov, R.J.: The chemistry of the zinc oxide cure of halobutyl. Rubber Chem. Technol. 57, 813–825 (1984)

    Google Scholar 

  19. Hendrikse, K.G., Mcgill, W.J., Reedijk, J., Nieuwenhuizen, P.J.: Vulcanization of chlorobutyl rubber. I. The identification of crosslink precursors in compounds containing ZnO/ZnCl2. J. Appl. Polym. Sci. 78, 2290–2301 (2000)

    Google Scholar 

  20. Jurkowska, B, Olkhov, Y.A., Jurkowski, B.: Thermomechanical study of Butyl Rubber mastication during compounding. J. Appl. Polym. Sci. 68, 2159–2167 (1998)

    Google Scholar 

  21. Hofmann, W.: Rubber Technology Handbook, 2nd edn, p. 611. Hanser Publishers, New York (1989)

    Google Scholar 

  22. Qu, L., Huang. G., Wu, J., Tang, Z.: Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J. Mater. Sci. 42, 7256–7262 (2007)

    Google Scholar 

  23. Sanjay, M, Gautam, S.: Effect of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of kaolin reinforced EPDM rubber. J. Appl. Polym. Sci. 119, 2268–2274 (2011)

    Google Scholar 

  24. Enizceylan, S., Burakkaracik, Sevild. Yakan, Oyas. Okay, Anndoguzokay, Evaluation of Butyl Rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ. Sci. Technol. 43, 3846–3852 (2009)

    Google Scholar 

  25. Galgotiya, S.: Handbook of Rubber technology, 278–292 (1998)

    Google Scholar 

  26. Gheno, S., Pessan, L.A.: Effect of the size of dispersed NBR phase in PVC/NBR blends on the stability of PVC to electron irradiation. In: Polymer, pp. 6833–6839 (2001)

    Google Scholar 

  27. Elhamouly, S.H.: Influences of accelerators on the structures and properties of Nitrile Butadiene Rubber. Mod. Appl. Sci. 4, P47 (2010)

    Google Scholar 

  28. Thompson, B.: Thermax® N990 thermal carbon black in Nitrile Rubber compounds. Asia-Pacific Marketing Cancarb Limited, 2010

    Google Scholar 

  29. Hwang, W.-G., Wei, K.-H., Wu, C.-M.: Mechanical, thermal, and barrier properties of NBR/Organosilicate Nanocomposites. Polym. Eng. Sci. 44, 11 (2004)

    Google Scholar 

  30. Li, Y., Wang, Q.; Wang, T., Pan, G.: Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J. Mater. Sci. 47, 730–738 (2012)

    Google Scholar 

  31. Stern, S.A.: Polymers for gas separations: the next decade. J. Membr. Sci. 94, 1–65 (1994)

    Google Scholar 

  32. Reddy, B.S.R., Senthilkumar, U.: Prospects of siloxane membrane technology for gas separation—a review. J. Sci. Ind. Res. 62, 666–677 (2003)

    CAS  Google Scholar 

  33. Panek, D., Konieczny, K.: Pervaporation of toluene and toluene/acetone/ethyl acetate aqueous mixtures through dense composite polydimethylsiloxane membranes. Desalination 200, 367–373 (2006)

    Google Scholar 

  34. Raut, A.M.: Pervaporation of aroma compounds using virgin and silicate-filled organophilic membranes: effect of aroma compound structure and comparison with distillation selectivity. Sci. Technol. 39, 1791–1814 (2004)

    CAS  Google Scholar 

  35. Shi, Y., Burns, B.M., Feng, X.: Poly(dimethyl siloxane) thin film composite membranes for propylene separation from nitrogen. J. Membr. Sci. 282, 115–123 (2006)

    Google Scholar 

  36. Joo, J., Lee, C.Y.: High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl.Phys 88, 513–519 (2000)

    Google Scholar 

  37. Clarson, S. J., Semlyen, J.A.: Siloxane Polymers. Prentice–Hall, Englewood Cliffs (1993)

    Google Scholar 

  38. Donnet, J. B.: Nano and microcomposites of polymers elastomers and their reinforcement. Compos. Sci. Technol. 63, 1085–1088 (2003)

    Google Scholar 

  39. Hepburn, C.: Filler reinforcement of rubber. Plast. Rubber Int. 9, 11 (1984)

    Google Scholar 

  40. Ogunniyi, D.: Filler reinforcement in rubber. Elastomerics 120, 24 (1988)

    Google Scholar 

  41. Goritz, D., Rabb, H., Frohlich, J., Marier, P.G.: Surface structure of carbon black and reinforcement. Rubber Chem. Technol. 72, 929 (1999)

    Google Scholar 

  42. Frogley, M.D., Ravich, D., Wagner, H.D.: Mechanical proper- ties of carbon nanoparticle-reinforced elastomers.Compos. Sci. Technol. 63, 1647 (2003)

    Google Scholar 

  43. Leopoldes, J., Barres, C., Leblanc, J.L.: Influence of filler–rubber interactions on the viscoelastic properties of carbon‐black‐filled rubber compounds. J. Appl. Polym. Sci. 2004, 91, 577

    Google Scholar 

  44. Aranguren, M. I., Mora, E., Macosko, C.W.: Compounding fumed silicas into polydimethylsiloxane: Bound rubber and final aggregate size. J. Colloid Interf. Sci. 195, 329 (1997)

    Google Scholar 

  45. Schaefer, D.W., Chen, C.Y., Yang, A.J.: U.S. Pat., 20050228106 (2005)

    Google Scholar 

  46. Takahashi et.al.: European Report,EP 97 30 6663. 9 Jan 1998

    Google Scholar 

  47. Kang, D.W., Hak. G.Y., Lee, K.S.: Preparation and characteristics of liquid silicone rubber nanocomposite containing ultrafine magnesium ferrite powder. J. Inorg Organomet Polym 14, 73–84 (2004)

    Google Scholar 

  48. Qian Wang, Q.Z., Huang Y.-h., Fu, Q.: Preparation of high-temperature vulcanized silicone rubber of excellent mechanical and optical properties using hydrophobic nano silica sol as reinforcement. Chinese J. Polym. Sci. 26, 495–500 (2008)

    Google Scholar 

  49. Laikhtman, A., Gouzman, I., Verker, R., Grossman, E.: Atomic oxygen and UV irradiation effects on fluorosilicone rubber: comparison of RF plasma and in-flight exposure. High Perform. Polym. 20, 447–460 (2008)

    Google Scholar 

  50. O’Neill. M.J., McDanal, A.J., Piszczor, M.F.: 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, January, 2005

    Google Scholar 

  51. Soucek, M.D., Dworak. D.P., Chakraborty, R.: A new class of silicone resins for coatings. J. Coat. Technol. Res. 4, 263–274 (2007)

    Google Scholar 

  52. Banks, B.A., Dever. J.A., Gebauer, L., Hill, C.M.: Atomic oxygen interactions with FEP Teflon and Silicones on LDEF. In: 1st LDEF Post-Retrieval Symposium, Kissimmee, FL, June, 1991

    Google Scholar 

  53. Banks, B.A., Rutledge, S. K., de Groh, K.K., Mirtich, M.J., Gebauer, L., Olle, R., Hill, C.M.: The implications of the LDEF results on space station freedom power system materials. In: 5th international symposium on materials in a space environment, Cannes–Mandelieu, France, September, 1991

    Google Scholar 

  54. Banks, B., Rutledge, S., Sechkar, E.,Stueber, T., Snyder, A., Hatas, C., Brinker, D.: The 8th International Symposium on Materials in a Space Environment Arcachon, France, June, 2000

    Google Scholar 

  55. Zhang, L.X., He, S.Y.: Damage effects and mechanisms of proton irradiation on methyl silicone rubber. Mater. Chem. Phys 83, 255–259 (2004)

    Google Scholar 

  56. Xinga, A., Gao, Y.: Preparation and atomic oxygen erosion resistance of silica film formed on silicon rubber by sol–gel method. Appl. Surf. Sci. 256, 6133–6138 (2010)

    Google Scholar 

  57. Hino, T., Igarashi, Y., Ymauchi, Y., Nishikawa, M.: Surface wettability of silicon rubber after irradiation with a glow discharge plasma. Vacuum 83, 506–509 (2009)

    Google Scholar 

  58. Keller, M.W.: A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 17, 2399–2404 (2007)

    Google Scholar 

  59. Plunkett, R.J. P.: US Patent 2, assigned to Kinetic Chemicals. Chem. Abstr. 35, 3365 (1941)

    Google Scholar 

  60. Smart, B.E.: In: Patai, S., Rappoport, Z. (eds.) The chemistry of functional groups (suppl. D). Wiley, New York, 1983, chap 14

    Google Scholar 

  61. Ferro, R., Fiorello, G., Restelli., Extruding fluorelastomers to meet higher performance needs,. Parts 1 and 2. Elastomerics 1989

    Google Scholar 

  62. Améduri, B., Boutevin, B., Kostov, G.: Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 26, 105–187

    Google Scholar 

  63. Smith, S.: Preparation, properties and industrial applications of organofluorine compounds. In: Banks, R.E., (ed.) Fluoroelastomers, pp. 235–295 (1982)

    Google Scholar 

  64. Logothetis, A.L.: Chemistry of fluorocarbon elastomers. Prog. Polym. Sci. 14, 251–296 (1989)

    Google Scholar 

  65. Arcella, V., Ferro, R.: Fluorocarbon elastomers. In: Scheirs, J. (ed.) Modern fluoropolymers. Wiley, New York, pp. 71–90 (1997)

    Google Scholar 

  66. Marshall, J., Kalrezw-type perfluoroelastomers Ð synthesis, properties and applications. In: Scheirs, J. (ed.) Modern fluoropolymers. Wiley, London, pp. 349–358 (1997)

    Google Scholar 

  67. Dixon, S., Rexford, D., Rugg, J.S.: Vinylidene Fluoride – Hexafluoropropylene Copolymer. Ind. Eng. Chem. 49, 1687–1690 (1957)

    Google Scholar 

  68. Pattison, D.B.: US Patent 3,876,654, assigned to DuPont, 1975

    Google Scholar 

  69. Paciorek, K.J.L.: Chemical crosslinking of fluoroelastomers. Wiley, New York, 291–374 (1972)

    Google Scholar 

  70. Florin, R.E.: Radiation chemistry of fluorocarbon polymers, pp. 317–380. Wiley, New York (1972)

    Google Scholar 

  71. Fetters, L.J.: Nitroso fluoropolymers. In: Wall, L.A. (ed.) Fluoro polymers. Wiley, New York, pp. 175–193 (1972)

    Google Scholar 

  72. Schmiegel, W. W.: Crosslinking of elastomeric vinylidene fluoride copolymers with nucleophiles. Angew. Makromol. Chem. 76, 39–65 (1979)

    Google Scholar 

  73. Smith, J. F.: The Chemistr. of "TViton" , Fluorocarbon Elastomer. Rubber World 142, 102–107 (1960)

    Google Scholar 

  74. Paciorek, K.L., Mitchell, L., Lenk, C.T.: Mechanism of amine crosslinking of fluoroelastomers. I. Solution studies. J. Polym. Sci. 45, 405–411 (1960)

    Google Scholar 

  75. Garvey, B. S.: Elastomers. Materials of Construction Review. Ind. Eng. Chem. 52, 889–891 (1960)

    Google Scholar 

  76. Dick, J.S., Worm, A.: Storage stability of FKM compound based on a bisphenol af/onium cure system and its potential as a standard reference compound. Rubber World 219, 22–28 (1999)

    Google Scholar 

  77. Schmiegel, W.W., Logothetis, A.: Polymers for ®bers and elastomers. In: ACS symposium series, vol. 260, pp. 159–182 (1984)

    Google Scholar 

  78. Van Cleeff, A.: Fluoroelastomers. In: Scheirs, J. Modern Fluo-ropolymers, Wiley, New York, pp. 597–614 (1997)

    Google Scholar 

  79. Banks, R.E., Smart, B.E., Tatlow, J.C.: Organofluorine chemistry: principles and commercial applications. Plenum Press, New York, pp. 373–395 (1994)

    Google Scholar 

  80. Cook, D., Lynn, M.: Rapra Review Reports, vol. 3, Report 32, Shrewsbury, 1995, pp. 1–27

    Google Scholar 

  81. Hatada, K., Kitayama, T., Vogl, O.: Perfluoroelastomers and their functionalization. In: Macromolecular design of polymeric materials. Marcel Dekker, New York, pp. 447–455 (1997)

    Google Scholar 

  82. Ameduri, B., Boutevin, B., Petrova, P., Kostov, G.: Synthesis and polymerization of fluorinated monomers bearing a reactive lateral group. Part 10. Copolymerization of vinylidene fluoride (VDF) with 5-thioacetoxy-1,1,2-trifluoropentene for the obtaining of a novel PVDF containing mercaptan side-groups. Des. Monomers Polym. 2, 267–285 (1999)

    Google Scholar 

  83. Lyons, B.J.: The crosslinking of fluoropolymer with ionising radiation: a review. In: Second International Conference on Radiation Processing for Plastics and Rubbers, Canterbury, UK, March 1984, pp. 1–8

    Google Scholar 

  84. Lyons, B.J.: Radiation crosslinking of fluoropolymers—a review. Radiat. Phys. Chem. 45, 158–174 (1994)

    Google Scholar 

  85. Lyons, B.J.: The radiation crosslinking of fluoropolymers, Wiley, New York, pp. 335–347 (1997)

    Google Scholar 

  86. Logothetis, A.L.: Crosslinking of tetrafluoro-ethylene–perfluoro-(methyl vinyl ether) perfluoro-elastomers with electron beam irradiation. Polym. Int. 48, 993–995 (1999)

    Article  CAS  Google Scholar 

  87. Forsythe, J.S.: Effect of temperature and a crosslinking promoter on the γ-radiolysis of a perfluoro-elastomer. Polym. Int. 48, 1004–1009 (1999)

    Article  CAS  Google Scholar 

  88. Forsythe, J.S., Hill, D.J.: Radiation chemistry of fluoropolymers. Prog. Polym. Sci. 25, 101–136 (2000)

    Article  CAS  Google Scholar 

  89. Smith, J.F., Perkins, G.: The mechanism of post cure of viton A Fluorocarbon elastomer. J. Appl. Polym. Sci. 5, 460–466 (1961)

    Google Scholar 

  90. Apotheker, D., Finlay, J., Krusic, P.J., Logothetis, A.L.: Curing of fluoroelastomers by peroxides. Rubber Chem. Technol. 55, 1004–1011 (1982)

    Google Scholar 

  91. Taguet, A., Ameduri, B., Boutevin, B.:Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers. Advances in Polymer Science 184, 127–211 (2005)

    Google Scholar 

  92. Kalfayan, S.H., Silver, R.H., Maezzo, A.A.: Accelerated heat-aging studies on fluorosilicone rubber. Rubber Chem. Technol. 48, 944–952 (1975)

    Google Scholar 

  93. Logothetis, A.L.: Perfluoroelastomers and their functionalization. In: Macromolecular design of polymeric materials. Marcel Dekker, New York, pp. 447–455 (1997)

    Google Scholar 

  94. Logothetis, A.L.: Organofluorine chemistry: principles and commercial applications, pp. 373–395. Plenum Press, New York (1994)

    Book  Google Scholar 

  95. Wang, Y.-m., Liu, L., Luo, Y.-f., Jia, D.: Studies on self-vulcanizing fluoroelastomer/phenol hydroxy silicone rubber blends. Chinese J. Polym. Sci. 27, 381–386 (2009)

    Google Scholar 

  96. Kraskshin, M.A., K.G., Kazmina NI., Production of tyres. RTI ATI (Russ) 1 4, 5–8 (1975)

    Google Scholar 

  97. Van cleeff, A.: Modern Fluoroeeastomers. Wiley, New York, 1997, pp. 597–614

    Google Scholar 

  98. Sinha, N. K., Baldev R.: Basis of property limits for inflatable seal fluoroelastomers. Nuclear Eng. Des. 244, 100–108 (2012)

    Google Scholar 

  99. Albano, M., Arcella, V., Chiodini, G., Saronno, V., Minutillo, A.: European Patent 0,618,241 B, assigned to Ausimont, 1994

    Google Scholar 

  100. Legare, J., Thomas, E., Fulford, K., Cargo, J., Santa Monica, C.A.: Characterization of elemental extractables in perfluoroelastomer and fluoroelastomer sealing parts. In: Microcontamination’93 Conference Proceedings, 1993, pp. 36–46

    Google Scholar 

  101. Kim, D.H., Hwang, S.H., Park, T.S., Kim, B.S.: Effects of waste ground fluororubber vulcanizate powders on the properties of silicone rubber/fluororubber blends. J. Appl. Polym. Sci. 127, 561–569 (2013)

    Google Scholar 

  102. Hepburn, C.: Polyurethane Elastomers. Applied Science Publishers, New York (1982)

    Google Scholar 

  103. Hardianto, H.,Mayorga, V.I.: Prosiding Seminar Sehari 70 Tahun Noer Mandsjoeriah Surdia, pp. 4–19, 2003

    Google Scholar 

  104. Mehdi, B.: Thermoplastic polyurethane elastomers, synthesis and study of effective structural parameters. Iran. Polym. J. 5, 231–235 (1996)

    Google Scholar 

  105. Cooper, S.L., Tobolsky, A.V.: Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 10, 1837–1844 (1966)

    Article  CAS  Google Scholar 

  106. Bagdi, K.M., Sajo, I., Pukanszky, B.: Specific interactions, structure and properties in segmented polyurethane elastomers. eXPRESS Polymer Letter, 5, 2011

    Google Scholar 

  107. Cao, X.: Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46, 775–783 (2005)

    Google Scholar 

  108. Kim, C.J., Youn, J.R.: Environmentally friendly processing of polyurethane foam for thermal insulation. Polym. Plast. Technol. Eng. 39, 163–185 (2000)

    Google Scholar 

  109. Lu, Y., Zhang, J., Chang, P., Quan, Y., Chen, Q.: Effect of Filler on the compression set, compression stress-strain behaviour and mechanical properties of polysulfide sealants. JAPS, 120, 2001–2007 (2011)

    Google Scholar 

  110. Zaitseva, E.I., Donskoi, A.A.: Novel polysulfide sealing compositions for aircraft industry. Polym. Sci. Series D 2, 250–256 (2009)

    Google Scholar 

  111. Donskoi. A. A, Zaitsev. E. I., Sealants based on polysulfide elastomers. Polym. Sci. Series D 1, 280–297 (2008)

    Google Scholar 

  112. Quan, Y., He, P., Zhou, B., Chen, Q.: Modification of polysulfide sealant with polysulfide polythio-urethane-urea. J. Appl. Polym. Sci. 106, 2599–2604 (2007)

    Google Scholar 

  113. Matsui, T., Nakajima, M., Nonaka, T., Dokoshi, N.: New liquid polysulfide polymer terminated with silyl group. J. Appl. Polym. Sci. 93, 2642–2649 (2004)

    Google Scholar 

  114. Dinga, K., Jiaa, Z., Mab, W., Jianga, D., Zhaoa, Q., Caoa, J., Tonga, R.: Corrosion protection of mild steel with polyaniline–thiokol rubber composite coatings. Prot. Metals 39, 71–76 (2003)

    Google Scholar 

  115. Warner, R.R.: Hypalon S-2—New Elastomer. Rubber Age. 71, 205 (1952)

    Google Scholar 

  116. Nersasian, A., Johnson, P.R.: Infrared spectra of alkanesulfonic acids, chlorosulfonated polyethylene, and their derivatives. J. Appl. Polym. Sci. 9, 1653–1668 (1965)

    Google Scholar 

  117. Smook, M. A., Pieski, E. T., Hammer, C. F.: Derivatives of Chlorosulfonated Polyethylene and Their Infrared Spectra. Ind. Eng. Chem. 45, 2731–2737 (1953)

    Google Scholar 

  118. Maynard, J. T.: Crosslinking Chlorosulfonated Polyethylenes. Rubber Chem. Technol. 36, 963–974 (1963)

    Google Scholar 

  119. Johnson, P.R.: Crosslinking chlorosulphonated polyethylene with ammonia. Du Pont HYPALON Report Oct. 1964

    Google Scholar 

  120. Dupuis, I.C.: Selecting a curing system. Du Pont HYPALON report HP-30.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ponnamma, D. et al. (2013). Special Purpose Elastomers: Synthesis, Structure-Property Relationship, Compounding, Processing and Applications. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_3

Download citation

Publish with us

Policies and ethics