Skip to main content

Interpenetrating Polymer Networks: Processing, Properties and Applications

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

Interpenetrating polymer networks (IPNs) are defined as combination of two or more polymers in network form with at least one of which is polymerised and/or crosslinked in the immediate presence of the others. IPNs are based on combinations of two or more polymers and are younger cousins to polymer blends, blocks and grafts. All these are members of a larger class of multicomponent polymeric systems, where as in IPNs, the polymers are crosslinked, thus providing a mechanism for controlling the domain sizes and reducing creep and flow. Though the idea behind IPN synthesis is to effect molecular level interpenetration of the polymer networks, most IPNs form immiscible systems with phase separation during some stage of synthesis. Aylsworth, in 1914 invented the first known IPN, but the term IPN was coined much later in 1960, by Millar who developed PS/PS IPNs to be used as ion exchange resin matrices (Aylsworth, US Patent 1, 111, 284, 1914), (Millar, J. Chem. Soc. 1311, 1960). The literature review shows that Sperling and coworkers at Lehigh university, USA followed by Frisch from University of Detroit and Frisch from Suny, Albany have made the most contributions to this research area. The current review on IPNs summarises the processing, properties and applications of IPNs, with special focus on some recent developments and trends.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aylsworth, J.W.: US Patent 1, 111, 284 (1914)

    Google Scholar 

  2. Millar, J.R.: Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1311 (1960)

    Google Scholar 

  3. Work, J.L.: Solid-state structure of melt blended incompatible polymeric mixtures involving poly(vinyl chloride). Polym. Eng. Sci. 13, 46 (1973)

    Article  CAS  Google Scholar 

  4. Molau, G.E.: Colloidal and morphological behavior of block and graft copolymers. Plenum, New york (1971)

    Book  Google Scholar 

  5. Szwarc, M.: Block and graft polymers their synthesis, especially by living polymer technique, and their properties. Polym. Eng. Sci. 13, 1 (1973)

    Article  CAS  Google Scholar 

  6. Sperling, L.H., Mishra, V.: The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197 (1996)

    Article  CAS  Google Scholar 

  7. Mathew, A.P., Packirisamy, S., Thomas, S.: Morphology, mechanical properties failure topography of semi-interpentrating polymer networks based on natural rubber polystyrene. J. Appl. Polym. Sci. 78, 2327–2344 (2000)

    Article  CAS  Google Scholar 

  8. Sperling, L.H.: IPN and relatedmaterials. Plenum press, Newyork (1981)

    Google Scholar 

  9. Chakraborty, D., Das, B., Roy, S.: Epoxy resin–poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, mechanical, and thermal properties. J. Appl. Polym. Sci. 67, 1051 (1998)

    Article  Google Scholar 

  10. Tan, S., Zhang, D., Zhou, E.: Dynamic mechanical properties of interpenetrating polymer networks based on polyacrylates and epoxy. Acta Polymerca 47, 507 (1996)

    Article  CAS  Google Scholar 

  11. Frisch, H.L., Klempner, D.: Topological Isomerism and Macromolecules. In: Pasika, W.M. (ed.) Advances in Macromolecular Chemistry, vol. 2, Academic Press(1970)

    CAS  Google Scholar 

  12. Coran, A.Y., Patel, R.P.: In: Holden, G., Legge, N.R., Quirk, R., Schroeder, H.E. (eds.) Thermoplastic elastomers. Hanser, Munich (1996)

    Google Scholar 

  13. Lipatov, Y.S., Karanova, L.V., Gorbach, L.A., Lutsyk, E.D., Sergeeva, L.M.: Temperature transitions and compatibility in gradient interpenetrating polymer networks. Polym. Int. 28(2), 99 (1992)

    Article  CAS  Google Scholar 

  14. Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: Epoxy/acrylic simultaneous interpenetrating networks. J Polym. Sci. 46C, 175 (1974)

    Google Scholar 

  15. Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: In: Deanin, R.D., Crugnola, A.M. (eds.) Toughness and brittleness of plastics. Advances in Chemistry, Ser. 154. American Chemical Society, Washington (1976)

    Google Scholar 

  16. Wang, S.H., Zawadzki, S., Akcelrud, L.: Morphology and Damping Behavior of Polyurethane/PMMA Simultaneous Interpenetrating Networks. Mater. Res. 4(1), 27–33 (2001)

    CAS  Google Scholar 

  17. Mathew, A.P., Packirisamy, S., Thomas Eur, S.: Effect of initiating system, blend ratio crosslink density on the mechaical properties failure topography of nano-structured full-interpenetrating polymer networks from natural rubber polystyrene. Polym. J. 37, 1921 (2001)

    CAS  Google Scholar 

  18. Shyu, S.S., Cen, D.S.: Polycarbonate-polyurethane semi-interpenetrating polymer networks: Tg behavior and morphology. J. Appl. Polym. Sci. 34, 2151 (1987)

    Article  CAS  Google Scholar 

  19. Kim, S.C., Klempner, D., Frisch, K.C., Frisch, H.L.: Polyurethane interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly(methyl methacrylate) and Polyurethane-Polystyrene IPN's . Macromolecules 9(2), 263 (1976)

    Article  CAS  Google Scholar 

  20. Kong, X., Narine, S.S.: Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8), 2221 (2008)

    Article  CAS  Google Scholar 

  21. Heulck, V., Thomas, D.A., Sperling, L.H.: Interpenetrating Polymer Networks of Poly(ethyl acrylate) and Poly(styrene-co-methly methacrylate). I. Morphology via Electron Microscopy. Macromolecules 5, 340 (1972)

    Google Scholar 

  22. De Gennes, P–.P.: Sliding gels. Phys. A. 271, 231 (1999)

    Article  Google Scholar 

  23. Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221 (1996)

    Google Scholar 

  24. Robeson, L.M.: Polymer Blends: A comprehensive review, Hanser (2007)

    Google Scholar 

  25. Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules 9(4), 676 (1976)

    Article  CAS  Google Scholar 

  26. Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 2. Influence of Synthetic Detail and Morphology on Mechanical Behavior. Macromolecules 9(4), 671 (1976)

    Article  CAS  Google Scholar 

  27. Yeo, J.K., Sperling, L.H., Thomas, D.A.: Theoretical prediction of domain sizes in IPN's and related materials. Polymer 24, 307 (1983)

    Article  CAS  Google Scholar 

  28. Mathew, A.P., Groeninckx, G., Radhusch, H.J., Michler, G.H., Thomas, S.: Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. J. Polym. Sci. Polym. Phys. 41, 1680 (2003)

    Article  CAS  Google Scholar 

  29. Chen, C.H., Chen, W.J., Chen, M.H., Li, Y.M.: Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Synthesis, swelling ratio, thermal properties and morphology. Polymer 41, 7961 (2000)

    Article  CAS  Google Scholar 

  30. Hourston, D.J., Schafer, F.U.: Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, phase continuity and mechanical properties as a function of composition. Polymer 37, 3521 (1996)

    Article  CAS  Google Scholar 

  31. Klempner, D., Berkowski, L.: Encyclopedia of polymer science and engineering, vol. 8. Wiley, New York (1988)

    Google Scholar 

  32. Sun, Y-Y., Chen, C-H: Interpenetrating polymer network of blocked polyurethane and phenolic resin. I. synthesis, morphology, and mechanical properties. Polym. Eng. Sci. 51, 285–293 (2011)

    Google Scholar 

  33. Roha, M., Dong, F., Appl, J.: The effects of functional azo initiator on PMMA and polyurethane IPN systems. III. Tear resistance and crack growth of PBD(1,2)-PU/PMMA (50%) blends. Polym. Sci. 45, 1397–1409 (1992)

    CAS  Google Scholar 

  34. Valero, M.F.: Polyurethane–Polystyrene simultaneous interpenetrating networks from modified castor oil. J. Elast. Plast. 42, 255–265 (2010)

    Google Scholar 

  35. Valero, M.F., Pudino, J.E., Ramirez, A., Cheng, Z.: Simultaneous interpenetrating polymer networks from pentaerythritol-modified castor oil and polystyrene: Structure-property relationship. J. Am. O Chem. Soc. 86 (4), 383–392 (2009)

    Google Scholar 

  36. Bird, S.A., Clary, D., Jajam, K.C., Tippur, H.V., Auad, M.L.: Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym. Eng. Sci. (2012). doi:10.1002/pen.23305

    Google Scholar 

  37. Dongyan, T., Hong, L., Weimin, C.: Synthesis and application studies of castor oil PU/PMMA IPNs with BaTiO3 fiber nanocomposites. Ferroelectrics 265, 259 (2002)

    Article  Google Scholar 

  38. Lei, Z., Yang, Q., Wu, S., Song, X.: Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J. Appl. Polym. Sci. 111, 3150 (2009)

    Article  CAS  Google Scholar 

  39. Luo, Y.-L., Feng, Q.S., Xu, F.: Preparation and Properties of PVA/PAAm IPN Hydrogels-Copper Nanoparticles Nanocomposites. Adv. Mater. Res. 2397, 284–286 (2011)

    Google Scholar 

  40. Zhan, K., You, H., Liu, W., Lu, J., Lu, P., Dong, J.: Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Func. Polym 71, 756 (2011)

    Article  CAS  Google Scholar 

  41. Peterson, A.M., Kotthapalli H., Pahmathullah, M.A.M., Palmsese, G.R.: Investigation of interpenetrating polymer networks for self-healing applications. Comp. Sci. Tech. 72(2), 330 (2012)

    Google Scholar 

  42. Wang, J., Liu, F., Wei, J.: Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 67(8), 1709 (2011)

    Article  CAS  Google Scholar 

  43. Chung, C_W., Kang, J.Y., Yoon, I-S., Hwang, H-D., Balakrishnan, P., Cho, H-J., Chung, K-D., Kang, D-H., Kim, D–D.: Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf. B. 88, 711 (2011)

    Google Scholar 

  44. Myung, D., Waters, D., Wiseman, M., Duhamel, P-E., Noolandi, J., Ta, C.N., Frank, C.W.: Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 19, 647 (2008)

    Google Scholar 

  45. Owens, D.E., Jian, Y., Fang, J-E., Slaughter, B.V., Chen, Y-H., Peppas, N.A.: Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40, 7306 (2007)

    Google Scholar 

  46. Chekina, N.A., Pavlyunchenko, V.N., Danilichev, V.F., Ushakov, N.A., Novikov, S.A., Ivanchev, S.S.: A new polymeric silicone hydrogel for medical applications: synthesis and properties. Poym. Adv. Technol. 17, 872 (2006)

    Google Scholar 

  47. Sperling L.H.: Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advances in chemistry 211, American Chemical Society, Washington (1986)

    Google Scholar 

  48. Predecki, P.: A method for hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 8, 487 (1974)

    Article  CAS  Google Scholar 

  49. Odian, G., Bernstein, B.S.: Monomers improve radiation crosslinking in polymers. Nucleonics 21, 80 (1963)

    CAS  Google Scholar 

  50. Sperling, L.H., Florenza, V.A., Manson, J.A.: Interpenetrating polymer networks as piezodialysis membranes. J. Poly, Sci Polym. Lett. Ed. 13, 713 (1975)

    Article  CAS  Google Scholar 

  51. Balaji, R., Loileau, S., Guerin, P., Grande, D.: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polym. News 29, 205 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The collaboration support by Swedish Research Links, SIDA under project No. 348-2008-6040 is acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aji. P. Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathew, A.P. (2013). Interpenetrating Polymer Networks: Processing, Properties and Applications. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_10

Download citation

Publish with us

Policies and ethics