Skip to main content

Characterizing Definability of Second-Order Generalized Quantifiers

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6642))

Abstract

We study definability of second-order generalized quantifiers. We show that the question whether a second-order generalized quantifier \({\mathcal{Q}}_1\) is definable in terms of another quantifier \({\mathcal{Q}}_2\), the base logic being monadic second-order logic, reduces to the question if a quantifier \({\mathcal{Q}}^{\star}_1\) is definable in \({\rm FO}({\mathcal{Q}}^{\star}_2,<,+,\times)\) for certain first-order quantifiers \({\mathcal{Q}}^{\star}_1\) and \({\mathcal{Q}}^{\star}_2\). We use our characterization to show new definability and non-definability results for second-order generalized quantifiers. In particular, we show that the monadic second-order majority quantifier Most1 is not definable in second-order logic.

The first author was supported by grant 127661 of the Academy of Finland. The second author was supported by NWO Vici grant 277-80-001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mostowski, A.: On a generalization of quantifiers. Fund. Math. 44, 12–36 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)

    MathSciNet  MATH  Google Scholar 

  3. Väänänen, J.: Generalized quantifiers, an introduction. In: Väänänen, J. (ed.) ESSLLI 1997. LNCS, vol. 1754, pp. 1–17. Springer, Heidelberg (2000)

    Google Scholar 

  4. Ebbinghaus, H.D., Flum, J.: Finite model theory. In: Perspectives in Mathematical Logic, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

  5. Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)

    Google Scholar 

  6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Complexity of Computation (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1973). SIAM–AMS Proc., vol. VII, pp. 43–73. Amer. Math. Soc., Providence (1974)

    Google Scholar 

  7. Burtschick, H.J., Vollmer, H.: Lindström quantifiers and leaf language definability. Int. J. Found. Comput. Sci. 9(3), 277–294 (1998)

    Article  MATH  Google Scholar 

  8. Andersson, A.: On second-order generalized quantifiers and finite structures. Ann. Pure Appl. Logic 115(1-3), 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kontinen, J.: Definability of second order generalized quantifiers. PhD thesis, University of Helsinki (2005)

    Google Scholar 

  10. Kontinen, J.: Definability of second order generalized quantifiers. Arch. Math. Logic 49(3), 379–398 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kontinen, J.: The hierarchy theorem for second order generalized quantifiers. J. Symbolic Logic 71(1), 188–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bovet, D.P., Crescenzi, P., Silvestri, R.: A uniform approach to define complexity classes. Theor. Comput. Sci. 104(2), 263–283 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peichl, T., Vollmer, H.: Finite automata with generalized acceptance criteria. Discrete Mathematics and Theoretical Computer Science 4, 179–192 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Galota, M., Vollmer, H.: A generalization of the Büchi-Elgot-Trakhtenbrot-theorem. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 355–368. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Büchi, J.R., Elgot, C.C.: Decision problems of weak second order arithmetics and finite automata, Part I. Notices of the American Mathematical Society 5, 834 (1958)

    Google Scholar 

  16. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings Logic, Methodology and Philosophy of Sciences 1960. Stanford University Press, Stanford (1962)

    Google Scholar 

  17. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR 140, 326–329 (1961) (in Russian)

    Google Scholar 

  18. More, M., Olive, F.: Rudimentary languages and second-order logic. Math. Logic Quart. 43(3), 419–426 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Torán, J.: Structural properties of the counting hierarchies. PhD thesis, Facultat d’Informatica de Barcelona, Barcelona, Spain (1988)

    Google Scholar 

  20. Kontinen, J., Szymanik, J.: A remark on collective quantification. Journal of Logic, Language and Information 17(2), 131–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Szymanik, J.: Quantifiers in TIME and SPACE. Computational Complexity of Generalized Quantifiers in Natural Language. PhD thesis, Universiteit van Amsterdam (2009)

    Google Scholar 

  22. Immerman, N.: Descriptive complexity. In: Graduate Texts in Computer Science. Springer, New York (1999)

    Google Scholar 

  23. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Parberry, I., Schnitger, G.: Parallel computation with threshold functions. J. Comput. System Sci. 36(3), 278–302 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within \({\rm NC}^{1}\). J. Comput. System Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kontinen, J., Niemistö, H.: Extensions of MSO and the monadic counting hierarchy. Information and Computation 209(1), 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kontinen, J.: A logical characterization of the counting hierarchy. ACM Trans. Comput. Log. 10(1) (2009)

    Google Scholar 

  28. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17(1), 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ajtai, M.: \(\Sigma ^{1}_{1}\)-formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.: First-order expressibility of languages with neutral letters or: The Crane Beach conjecture. J. Comput. System Sci. 70(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: Proc. 19th Annual ACM Symposium on Theory of Computing, pp. 77–82. ACM Press, New York (1987)

    Google Scholar 

  32. Winter, Y.: Flexibility principles in Boolean semantics. The MIT Press, London (2001)

    MATH  Google Scholar 

  33. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. System Sci. 65(4), 695–716 (2002); Special issue on complexity (2001) (Chicago, IL)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kontinen, J., Szymanik, J. (2011). Characterizing Definability of Second-Order Generalized Quantifiers. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20920-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20919-2

  • Online ISBN: 978-3-642-20920-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics