Skip to main content

Effector Cell Recruitment by Bispecific Antibodies

  • Chapter
  • First Online:
Bispecific Antibodies

Abstract

Bispecific antibodies comprising two binding sites with different specificities in one single molecule offer an elegant approach to improve antibody therapy. For redirecting cytotoxic effector cells against tumors, typically the first binding site of a bispecific antibody recognizes a tumor-associated antigen, whereas the second site engages a stimulatory trigger molecule on effector cells. The adequate choice of the trigger molecule offers the opportunity to attract a defined pool of effector cells and may improve recruitment of Fc receptor-expressing cells such as monocytes/macrophages, granulocytes, or NK cells. Additionally, bispecific antibodies allow redirection of T lymphocytes which lack Fc receptors and therefore are not recruited by conventional antibodies. Meanwhile bispecific T cell engaging antibodies revealed therapeutic potential in clinical trials. This chapter outlines the concept of bispecific approaches in cancer immunotherapy, introduces candidate trigger molecules on different effector cell populations, and summarizes preclinical and clinical data obtained with bispecific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abes R, Gelize E, Fridman WH, Teillaud JL (2010) Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 116(6):926–934

    PubMed  CAS  Google Scholar 

  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61(12):4750–4755

    PubMed  CAS  Google Scholar 

  • Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1(3):220–228

    PubMed  CAS  Google Scholar 

  • Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    PubMed  CAS  Google Scholar 

  • Arndt MA, Krauss J, Kipriyanov SM, Pfreundschuh M, Little M (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin’s tumors. Blood 94(8):2562–2568

    PubMed  CAS  Google Scholar 

  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, Einsele H, Brandl C, Wolf A, Kirchinger P, Klappers P, Schmidt M, Riethmuller G, Reinhardt C, Baeuerle PA, Kufer P (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891):974–977

    PubMed  CAS  Google Scholar 

  • Bibeau F, Lopez-Crapez E, Di Fiore F, Thezenas S, Ychou M, Blanchard F, Lamy A, Penault-Llorca F, Frebourg T, Michel P, Sabourin JC, Boissiere-Michot F (2009) Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27(7):1122–1129

    PubMed  CAS  Google Scholar 

  • Bohlen H, Hopff T, Manzke O, Engert A, Kube D, Wickramanayake PD, Diehl V, Tesch H (1993) Lysis of malignant B cells from patients with B-chronic lymphocytic leukemia by autologous T cells activated with CD3 × CD19 bispecific antibodies in combination with bivalent CD28 antibodies. Blood 82(6):1803–1812

    PubMed  CAS  Google Scholar 

  • Borchmann P, Schnell R, Fuss I, Manzke O, Davis T, Lewis LD, Behnke D, Wickenhauser C, Schiller P, Diehl V, Engert A (2002) Phase 1 trial of the novel bispecific molecule H22 × Ki-4 in patients with refractory Hodgkin lymphoma. Blood 100(9):3101–3107

    PubMed  CAS  Google Scholar 

  • Borghaei H, Alpaugh RK, Bernardo P, Palazzo IE, Dutcher JP, Venkatraj U, Wood WC, Goldstein L, Weiner LM (2007) Induction of adaptive Anti-HER2/neu immune responses in a Phase 1B/2 trial of 2B1 bispecific murine monoclonal antibody in metastatic breast cancer (E3194): a trial coordinated by the Eastern Cooperative Oncology Group. J Immunother 30(4):455–467

    PubMed  CAS  Google Scholar 

  • Bortoletto N, Scotet E, Myamoto Y, D’Oro U, Lanzavecchia A (2002) Optimizing anti-CD3 affinity for effective T cell targeting against tumor cells. Eur J Immunol 32(11):3102–3107

    PubMed  CAS  Google Scholar 

  • Bruenke J, Fischer B, Barbin K, Schreiter K, Wachter Y, Mahr K, Titgemeyer F, Niederweis M, Peipp M, Zunino SJ, Repp R, Valerius T, Fey GH (2004) A recombinant bispecific single-chain Fv antibody against HLA class II and FcgammaRIII (CD16) triggers effective lysis of lymphoma cells. Br J Haematol 125(2):167–179

    PubMed  CAS  Google Scholar 

  • Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725

    PubMed  CAS  Google Scholar 

  • Buhmann R, Simoes B, Stanglmaier M, Yang T, Faltin M, Bund D, Lindhofer H, Kolb HJ (2009) Immunotherapy of recurrent B-cell malignancies after allo-SCT with Bi20 (FBTA05), a trifunctional anti-CD3 × anti-CD20 antibody and donor lymphocyte infusion. Bone Marrow Transplant 43(5):383–397

    PubMed  CAS  Google Scholar 

  • Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM, Eggermont AM, Goey SH, Gratama JW, Lamers CH et al (1995) Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 87(19):1463–1469

    PubMed  CAS  Google Scholar 

  • Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357

    PubMed  CAS  Google Scholar 

  • Chen J, Bashey A, Holman P, Carrier E, Law P, Ball ED (1999) A phase I dose escalating study of infusion of a bispecific antibody for relapsed/refractory acute myeloid leukemia. Blood 94(suppl 1):227b

    Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446

    PubMed  CAS  Google Scholar 

  • Cochlovius B, Kipriyanov SM, Stassar MJ, Christ O, Schuhmacher J, Strauss G, Moldenhauer G, Little M (2000) Treatment of human B cell lymphoma xenografts with a CD3 × CD19 diabody and T cells. J Immunol 165(2):888–895

    PubMed  CAS  Google Scholar 

  • Cragg MS, French RR, Glennie MJ (1999) Signaling antibodies in cancer therapy. Curr Opin Immunol 11(5):541–547

    PubMed  CAS  Google Scholar 

  • Curnow RT (1997) Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother 45(3–4):210–215

    PubMed  CAS  Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112(4):935–945

    PubMed  CAS  Google Scholar 

  • de Gast GC, Haagen IA, van Houten AA, Klein SC, Duits AJ, de Weger RA, Vroom TM, Clark MR, Phillips J, van Dijk AJ et al (1995) CD8 T cell activation after intravenous administration of CD3 × CD19 bispecific antibody in patients with non-Hodgkin lymphoma. Cancer Immunol Immunother 40(6):390–396

    PubMed  Google Scholar 

  • de Gast GC, van de Winkel JG, Bast BE (1997) Clinical perspectives of bispecific antibodies in cancer. Cancer Immunol Immunother 45(3–4):121–123

    PubMed  Google Scholar 

  • de Haij S, Jansen JH, Boross P, Beurskens FJ, Bakema JE, Bos DL, Martens A, Verbeek JS, Parren PW, van de Winkel JG, Leusen JH (2010) In vivo cytotoxicity of type I CD20 antibodies critically depends on Fc receptor ITAM signaling. Cancer Res 70(8):3209–3217

    PubMed  Google Scholar 

  • de la Hera A, Muller U, Olsson C, Isaaz S, Tunnacliffe A (1991) Structure of the T cell antigen receptor (TCR): two CD3 epsilon subunits in a functional TCR/CD3 complex. J Exp Med 173(1):7–17

    PubMed  Google Scholar 

  • Deo YM, Graziano RF, Repp R, van de Winkel JG (1997) Clinical significance of IgG Fc receptors and Fc gamma R-directed immunotherapies. Immunol Today 18(3):127–135

    PubMed  CAS  Google Scholar 

  • Deo YM, Sundarapandiyan K, Keler T, Wallace PK, Graziano RF (1998) Bispecific molecules directed to the Fc receptor for IgA (Fc alpha RI, CD89) and tumor antigens efficiently promote cell-mediated cytotoxicity of tumor targets in whole blood. J Immunol 160(4):1677–1686

    PubMed  CAS  Google Scholar 

  • Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97(2):339–345

    PubMed  Google Scholar 

  • Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R, Baeuerle PA (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100(6):690–697

    PubMed  CAS  Google Scholar 

  • Dreier T, Baeuerle PA, Fichtner I, Grun M, Schlereth B, Lorenczewski G, Kufer P, Lutterbuse R, Riethmuller G, Gjorstrup P, Bargou RC (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J Immunol 170(8):4397–4402

    PubMed  CAS  Google Scholar 

  • Elsasser D, Valerius T, Repp R, Weiner GJ, Deo Y, Kalden JR, van de Winkel JG, Stevenson GT, Glennie MJ, Gramatzki M (1996) HLA class II as potential target antigen on malignant B cells for therapy with bispecific antibodies in combination with granulocyte colony-stimulating factor. Blood 87(9):3803–3812

    PubMed  CAS  Google Scholar 

  • Elsasser D, Stadick H, Stark S, Van de Winkel JG, Gramatzki M, Schrott KM, Valerius T, Schafhauser W (1999) Preclinical studies combining bispecific antibodies with cytokine-stimulated effector cells for immunotherapy of renal cell carcinoma. Anticancer Res 19(2C):1525–1528

    PubMed  CAS  Google Scholar 

  • Ely P, Wallace PK, Givan AL, Graziano RF, Guyre PM, Fanger MW (1996) Bispecific-armed, interferon gamma-primed macrophage-mediated phagocytosis of malignant non-Hodgkin’s lymphoma. Blood 87(9):3813–3821

    PubMed  CAS  Google Scholar 

  • Fanger MW, Segal DM, Romet-Lemonne JL (1991) Bispecific antibodies and targeted cellular cytotoxicity. Immunol Today 12(2):51–54

    PubMed  CAS  Google Scholar 

  • Fiedler WM, Ritter B, Seggewiss R, Bokemeyer C, Fettes P, Klinger M, Vieser E, Ruettinger D, Kaubitzsch S, Wolf M (2010) Phase I safety and pharmacology study of the EpCAM/CD3-bispecific BiTE antibody MT110 in patients with metastatic colorectal, gastric, or lung cancer. J Clin Oncol, ASCO Annual Meeting Proceedings 28(15):2573

    Google Scholar 

  • Fury MG, Lipton A, Smith KM, Winston CB, Pfister DG (2008) A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother 57(2):155–163

    PubMed  CAS  Google Scholar 

  • Glennie MJ, French RR, Cragg MS, Taylor RP (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44(16):3823–3837

    PubMed  CAS  Google Scholar 

  • Glorius P, Baerenwaldt A, Kellner C, Staudinger M, Parren PWHI, van de Winkel JGJ, Humpe A, Valerius T, Repp R, Nimmerjahn F, Gramatzki M, Peipp M (2010) The novel bispecific antibody [(CD20)2 × CD16] efficiently triggers lysis of neoplastic B cells. Blood (ASH Annual Meeting Abstracts), 116(21):2846

    Google Scholar 

  • Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, Lin WY, Hu Z, Lu Y, Chen Y, Wu Y, Meng YG, Gribling P, Lin Z, Nguyen K, Tran T, Zhang Y, Rosen H, Martin F, Chan AC (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174(2):817–826

    PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    PubMed  CAS  Google Scholar 

  • Grosse-Hovest L, Hartlapp I, Marwan W, Brem G, Rammensee HG, Jung G (2003) A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol 33(5):1334–1340

    PubMed  CAS  Google Scholar 

  • Grosse-Hovest L, Wick W, Minoia R, Weller M, Rammensee HG, Brem G, Jung G (2005) Supraagonistic, bispecific single-chain antibody purified from the serum of cloned, transgenic cows induces T-cell-mediated killing of glioblastoma cells in vitro and in vivo. Int J Cancer 117(6):1060–1064

    PubMed  CAS  Google Scholar 

  • Guettinger Y, Barbin K, Peipp M, Bruenke J, Dechant M, Horner H, Thierschmidt D, Valerius T, Repp R, Fey GH, Stockmeyer B (2010) A recombinant bispecific single-chain fragment variable specific for HLA class II and Fc alpha RI (CD89) recruits polymorphonuclear neutrophils for efficient lysis of malignant B lymphoid cells. J Immunol 184(3):1210–1217

    PubMed  CAS  Google Scholar 

  • Hartmann F, Renner C, Jung W, Pfreundschuh M (1998) Anti-CD16/CD30 bispecific antibodies as possible treatment for refractory Hodgkin’s disease. Leuk Lymphoma 31(3–4):385–392

    PubMed  CAS  Google Scholar 

  • Heijnen IA, Van de Winkel JG (1995) A human Fc gamma RI/CD64 transgenic model for in vivo analysis of (bispecific) antibody therapeutics. J Hematother 4(5):351–356

    PubMed  CAS  Google Scholar 

  • Heijnen IA, van Vugt MJ, Fanger NA, Graziano RF, de Wit TP, Hofhuis FM, Guyre PM, Capel PJ, Verbeek JS, van de Winkel JG (1996) Antigen targeting to myeloid-specific human Fc gamma RI/CD64 triggers enhanced antibody responses in transgenic mice. J Clin Invest 97(2):331–338

    PubMed  CAS  Google Scholar 

  • Honeychurch J, Tutt AL, Valerius T, Heijnen IA, Van De Winkel JG, Glennie MJ (2000) Therapeutic efficacy of FcgammaRI/CD64-directed bispecific antibodies in B-cell lymphoma. Blood 96(10):3544–3552

    PubMed  CAS  Google Scholar 

  • Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31(6):212–219

    PubMed  CAS  Google Scholar 

  • James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT (2001) A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer 85(2):152–156

    PubMed  CAS  Google Scholar 

  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, Zhang W, Tuaillon N, Rainey J, Barat B, Yang Y, Jin L, Ciccarone V, Moore PA, Koenig S, Bonvini E (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399(3):436–449

    PubMed  CAS  Google Scholar 

  • Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    PubMed  CAS  Google Scholar 

  • Keler T, Graziano RF, Mandal A, Wallace PK, Fisher J, Guyre PM, Fanger MW, Deo YM (1997) Bispecific antibody-dependent cellular cytotoxicity of HER2/neu-overexpressing tumor cells by Fc gamma receptor type I-expressing effector cells. Cancer Res 57(18):4008–4014

    PubMed  CAS  Google Scholar 

  • Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, Mentz K, Peipp M, Lang P, Oduncu F, Stockmeyer B, Fey GH (2008) A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 31(9):871–884

    PubMed  CAS  Google Scholar 

  • Kiewe P, Hasmuller S, Kahlert S, Heinrigs M, Rack B, Marme A, Korfel A, Jager M, Lindhofer H, Sommer H, Thiel E, Untch M (2006) Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res 12(10):3085–3091

    PubMed  CAS  Google Scholar 

  • Kimberly RP, Wu J, Gibson AW, Su K, Qin H, Li X, Edberg JC (2002) Diversity and duplicity: human FCgamma receptors in host defense and autoimmunity. Immunol Res 26(1–3):177–189

    PubMed  CAS  Google Scholar 

  • Kipriyanov SM, Cochlovius B, Schafer HJ, Moldenhauer G, Bahre A, Le Gall F, Knackmuss S, Little M (2002) Synergistic antitumor effect of bispecific CD19 × CD3 and CD19 × CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol 169(1):137–144

    PubMed  CAS  Google Scholar 

  • Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23(2):93–109

    PubMed  CAS  Google Scholar 

  • Kroesen BJ, Buter J, Sleijfer DT, Janssen RA, van der Graaf WT, The TH, de Leij L, Mulder NH (1994) Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br J Cancer 70(4):652–661

    PubMed  CAS  Google Scholar 

  • Kugler M, Stein C, Kellner C, Mentz K, Saul D, Schwenkert M, Schubert I, Singer H, Oduncu F, Stockmeyer B, Mackensen A, Fey GH (2010) A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol 150(5):574–586

    PubMed  Google Scholar 

  • Li M, Wirthmueller U, Ravetch JV (1996) Reconstitution of human Fc gamma RIII cell type specificity in transgenic mice. J Exp Med 183(3):1259–1263

    PubMed  CAS  Google Scholar 

  • Lindhofer H, Mocikat R, Steipe B, Thierfelder S (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 155(1):219–225

    PubMed  CAS  Google Scholar 

  • Loffler A, Kufer P, Lutterbuse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dorken B, Bargou RC (2000) A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95(6):2098–2103

    PubMed  CAS  Google Scholar 

  • Lu H, Shi M, Wang M, Xie Z, Hu M, Yu M, Shen B, Ma Y, Guo N (2008) In vitro and in vivo antitumor effect of a trivalent bispecific antibody targeting ErbB2 and CD16. Cancer Biol Ther 7(11):1744–1750

    PubMed  CAS  Google Scholar 

  • Lum LG, Rathore R, Cummings F, Colvin GA, Radie-Keane K, Maizel A, Quesenberry PJ, Elfenbein GJ (2003) Phase I/II study of treatment of stage IV breast cancer with OKT3 × trastuzumab-armed activated T cells. Clin Breast Cancer 4(3):212–217

    PubMed  CAS  Google Scholar 

  • Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, Friedrich M, Thomas O, Lorenczewski G, Rau D, Schaller E, Herrmann I, Wolf A, Urbig T, Baeuerle PA, Kufer P (2010) T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci USA 107(28):12605–12610

    PubMed  CAS  Google Scholar 

  • Manzke O, Tesch H, Borchmann P, Wolf J, Lackner K, Gossmann A, Diehl V, Bohlen H (2001) Locoregional treatment of low-grade B-cell lymphoma with CD3 × CD19 bispecific antibodies and CD28 costimulation. I. Clinical phase I evaluation. Int J Cancer 91(4):508–515

    PubMed  CAS  Google Scholar 

  • Marechal R, De Schutter J, Nagy N, Demetter P, Lemmers A, Deviere J, Salmon I, Tejpar S, Van Laethem JL (2010) Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer 10(1):340

    PubMed  Google Scholar 

  • McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U, Adams GP, Schier R, Marks JD, Weiner LM (2001) Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol 166(10):6112–6117

    PubMed  CAS  Google Scholar 

  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16(7):677–681

    PubMed  CAS  Google Scholar 

  • Monteiro RC, Van De Winkel JG (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204

    PubMed  CAS  Google Scholar 

  • Müller D, Kontermann RE (2007) Bispecific antibodies. In: Dübel S (ed) Handbook of therapeutic antibodies, vol 2. Wiley-VCH, Weinheim, pp 345–378

    Google Scholar 

  • Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Neri TM, Ardizzoni A (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2007) Antibodies, Fc receptors and cancer. Curr Opin Immunol 19(2):239–245

    PubMed  CAS  Google Scholar 

  • Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26(11):1774–1777

    PubMed  Google Scholar 

  • Otz T, Grosse-Hovest L, Hofmann M, Rammensee HG, Jung G (2009) A bispecific single-chain antibody that mediates target cell-restricted, supra-agonistic CD28 stimulation and killing of lymphoma cells. Leukemia 23(1):71–77

    PubMed  CAS  Google Scholar 

  • Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170

    PubMed  CAS  Google Scholar 

  • Posey JA, Raspet R, Verma U, Deo YM, Keller T, Marshall JL, Hodgson J, Mazumder A, Hawkins MJ (1999) A pilot trial of GM-CSF and MDX-H210 in patients with erbB-2-positive advanced malignancies. J Immunother 22(4):371–379

    PubMed  CAS  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20(4):460–470

    PubMed  CAS  Google Scholar 

  • Pullarkat V, Deo Y, Link J, Spears L, Marty V, Curnow R, Groshen S, Gee C, Weber JS (1999) A phase I study of a HER2/neu bispecific antibody with granulocyte-colony-stimulating factor in patients with metastatic breast cancer that overexpresses HER2/neu. Cancer Immunol Immunother 48(1):9–21

    PubMed  CAS  Google Scholar 

  • Ranft K, Thepen T, Fischer R, Barth S, Stocker M (2009) Recombinant bispecific single chain antibody fragments induce Fc gamma-receptor-mediated elimination of CD30+ lymphoma cells. Cancer Lett 282(2):187–194

    PubMed  CAS  Google Scholar 

  • Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23(9):1073–1078

    PubMed  CAS  Google Scholar 

  • Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, Stockmeyer B, Becker W, Eisenhut M, Steininger H, Deo YM, Blijham GH, Kalden JR, van de Winkel JG, Gramatzki M (2003) Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI × anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 89(12):2234–2243

    PubMed  CAS  Google Scholar 

  • Samelson LE (2002) Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 20:371–394

    PubMed  CAS  Google Scholar 

  • Schlaeth M, Berger S, Derer S, Klausz K, Lohse S, Dechant M, Lazar GA, Schneider-Merck T, Peipp M, Valerius T (2010) Fc-engineered EGF-R antibodies mediate improved antibody-dependent cellular cytotoxicity (ADCC) against KRAS-mutated tumor cells. Cancer Sci 101(5):1080–1088

    PubMed  CAS  Google Scholar 

  • Schlereth B, Quadt C, Dreier T, Kufer P, Lorenczewski G, Prang N, Brandl C, Lippold S, Cobb K, Brasky K, Leo E, Bargou R, Murthy K, Baeuerle PA (2006) T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol Immunother 55(5):503–514

    PubMed  CAS  Google Scholar 

  • Segal DM, Weiner GJ, Weiner LM (1999) Bispecific antibodies in cancer therapy. Curr Opin Immunol 11(5):558–562

    PubMed  CAS  Google Scholar 

  • Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36(6):458–467

    PubMed  CAS  Google Scholar 

  • Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM (2004) Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J Biol Chem 279(52):53907–53914

    PubMed  CAS  Google Scholar 

  • Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91(5):1644–1652

    PubMed  CAS  Google Scholar 

  • Small EJ, Reese DM, Um B, Whisenant S, Dixon SC, Figg WD (1999) Therapy of advanced prostate cancer with granulocyte macrophage colony-stimulating factor. Clin Cancer Res 5(7):1738–1744

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861

    PubMed  CAS  Google Scholar 

  • Stadick H, Stockmeyer B, Kuhn R, Schrott KM, Kalden JR, Glennie MJ, van de Winkel JG, Gramatzki M, Valerius T, Elsasser D (2002) Epidermal growth factor receptor and g250: useful target antigens for antibody mediated cellular cytotoxicity against renal cell carcinoma? J Urol 167(2 Pt 1):707–712

    PubMed  CAS  Google Scholar 

  • Staerz UD, Kanagawa O, Bevan MJ (1985) Hybrid antibodies can target sites for attack by T cells. Nature 314(6012):628–631

    PubMed  CAS  Google Scholar 

  • Stockmeyer B, Valerius T, Repp R, Heijnen IA, Buhring HJ, Deo YM, Kalden JR, Gramatzki M, van de Winkel JG (1997) Preclinical studies with Fc(gamma)R bispecific antibodies and granulocyte colony-stimulating factor-primed neutrophils as effector cells against HER-2/neu overexpressing breast cancer. Cancer Res 57(4):696–701

    PubMed  CAS  Google Scholar 

  • Stockmeyer B, Elsasser D, Dechant M, Repp R, Gramatzki M, Glennie MJ, van de Winkel JG, Valerius T (2001) Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods 248(1–2):103–111

    PubMed  CAS  Google Scholar 

  • Sundarapandiyan K, Keler T, Behnke D, Engert A, Barth S, Matthey B, Deo YM, Graziano RF (2001) Bispecific antibody-mediated destruction of Hodgkin’s lymphoma cells. J Immunol Methods 248(1–2):113–123

    PubMed  CAS  Google Scholar 

  • Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028

    PubMed  CAS  Google Scholar 

  • Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppa S (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 13(19):5784–5789

    PubMed  CAS  Google Scholar 

  • Topp MS, Zugmaier G, Goekbuget N, Kufer P, Mariele Goebeler, Klinger M, Degenhard E, Baeuerle PA, Schmidt M, Nagorsen D, Neumann S, Horst HA, Raff T, Viardot A, Stelljes M, Schmid M, Ottmann OG, Burmeister T, Einsele H, Riethmueller G, Hoelzer D, Bargou RC (2009) Report of a phase II trial of single-agent BiTE® antibody blinatumomab in patients with minimal residual disease (MRD) positive B-precursor acute lymphoblastic leukemia (ALL). Blood 114:346 (abstract 840)

    Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107

    PubMed  CAS  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10):735–747

    PubMed  CAS  Google Scholar 

  • Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199(12):1659–1669

    PubMed  CAS  Google Scholar 

  • Valerius T, Stockmeyer B, van Spriel AB, Graziano RF, van den Herik-Oudijk IE, Repp R, Deo YM, Lund J, Kalden JR, Gramatzki M, van de Winkel JG (1997) FcalphaRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood 90(11):4485–4492

    PubMed  CAS  Google Scholar 

  • Valone FH, Kaufman PA, Guyre PM, Lewis LD, Memoli V, Deo Y, Graziano R, Fisher JL, Meyer L, Mrozek-Orlowski M et al (1995) Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J Clin Oncol 13(9):2281–2292

    PubMed  CAS  Google Scholar 

  • van de Winkel JG, Capel PJ (1993) Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14(5):215–221

    PubMed  Google Scholar 

  • van Egmond M, van Vuuren AJ, Morton HC, van Spriel AB, Shen L, Hofhuis FM, Saito T, Mayadas TN, Verbeek JS, van de Winkel JG (1999) Human immunoglobulin A receptor (FcalphaRI, CD89) function in transgenic mice requires both FcR gamma chain and CR3 (CD11b/CD18). Blood 93(12):4387–4394

    PubMed  Google Scholar 

  • van Vugt MJ, Kleijmeer MJ, Keler T, Zeelenberg I, van Dijk MA, Leusen JH, Geuze HJ, van de Winkel JG (1999) The FcgammaRIa (CD64) ligand binding chain triggers major histocompatibility complex class II antigen presentation independently of its associated FcR gamma-chain. Blood 94(2):808–817

    PubMed  Google Scholar 

  • Wang SY, Veeramani S, Racila E, Cagley J, Fritzinger DC, Vogel CW, St John W, Weiner GJ (2009) Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 114(26):5322–5330

    PubMed  CAS  Google Scholar 

  • Weiner LM, Holmes M, Adams GP, LaCreta F, Watts P, Garcia de Palazzo I (1993a) A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res 53(1):94–100

    PubMed  CAS  Google Scholar 

  • Weiner LM, Holmes M, Richeson A, Godwin A, Adams GP, Hsieh-Ma ST, Ring DB, Alpaugh RK (1993b) Binding and cytotoxicity characteristics of the bispecific murine monoclonal antibody 2B1. J Immunol 151(5):2877–2886

    PubMed  CAS  Google Scholar 

  • Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947

    PubMed  CAS  Google Scholar 

  • Wurflein D, Dechant M, Stockmeyer B, Tutt AL, Hu P, Repp R, Kalden JR, van de Winkel JG, Epstein AL, Valerius T, Glennie M, Gramatzki M (1998) Evaluating antibodies for their capacity to induce cell-mediated lysis of malignant B cells. Cancer Res 58(14):3051–3058

    PubMed  CAS  Google Scholar 

  • Xie Z, Guo N, Yu M, Hu M, Shen B (2005) A new format of bispecific antibody: highly efficient heterodimerization, expression and tumor cell lysis. J Immunol Methods 296(1–2):95–101

    PubMed  CAS  Google Scholar 

  • Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, Lindhofer H (1999) Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol 163(3):1246–1252

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Valerius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellner, C., Peipp, M., Valerius, T. (2011). Effector Cell Recruitment by Bispecific Antibodies. In: Kontermann, R. (eds) Bispecific Antibodies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20910-9_13

Download citation

Publish with us

Policies and ethics