Skip to main content

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

In this paper we study energy efficient deadline scheduling on multiprocessors in which the processors consumes power at a rate of s α when running at speed s, where α ≥ 2. The problem is to dispatch jobs to processors and determine the speed and jobs to run for each processor so as to complete all jobs by their deadlines using the minimum energy. The problem has been well studied for the single processor case. For the multiprocessor setting, constant competitive online algorithms for special cases of unit size jobs or arbitrary size jobs with agreeable deadlines have been proposed [4]. A randomized algorithm has been proposed for jobs of arbitrary sizes and arbitrary deadlines [13]. We propose a deterministic online algorithm for the general setting and show that it is O(logα P)-competitive, where P is the ratio of the maximum and minimum job size.

This work is partially supported by EPSRC Grant EP/E028276/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S.: Algorithms for energy saving. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 173–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Albers, S.: Energy-efficient algorithms. Communication ACM 53(5), 86–96 (2010)

    Article  Google Scholar 

  3. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Transactions on Algorithms 3(4), 49 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albers, S., Muller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–298 (2007)

    Google Scholar 

  5. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 409–420. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 693–701 (2009)

    Google Scholar 

  7. Bansal, N., Chan, H.L., Pruhs, K., Rogozhnikov-Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 144–155. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal of the ACM 54(1), 3 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 805–813 (2007)

    Google Scholar 

  10. Becker, H.W., Riordan, J.: The arithmetic of Bell and Stirling numbers. American Journal of Mathematics 70, 385–394 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

    Article  Google Scholar 

  12. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Optimizing throughput and energy in online deadline scheduling. ACM Transactions on Algorithms 6(1), 10 (2009); Preliminary version appeared in Proceedings of Symposium on Discrete Algorithms SODA, pp. 795–804 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 11–18 (2009)

    Google Scholar 

  14. Han, X., Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.-H.: Deadline scheduling and power management for speed bounded processors. Theoretical Computer Science 411(40-42), 3587–3600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Irani, S., Pruhs, K.: Algorithmic problems in power management. ACM SIGACT News 32(2), 63–76 (2005)

    Article  Google Scholar 

  16. Irani, S., Shukla, S., Gupta, R.K.: Algorithms for power savings. ACM Transactions on Algorithms 3(4), 41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lam, T.W., Lee, L.K., Ting, H.F., To, I.K.K., Wong, P.W.H.: Sleep with guilt and work faster to minimize flow plus energy. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 665–676. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Improved multi-processor scheduling for flow time and energy. Journal of Scheduling (to appear), http://dx.doi.org/10.1016/j.tcs.2010.05.035 ; Preliminary version appeared in Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures, pp. 256–264 (2008)

  19. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow time scheduling based on active job count. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Mudge, T.: Power: A first-class architectural design constraint. Computer 34(4), 52–58 (2001)

    Article  Google Scholar 

  21. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pp. 374–382 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bell, P.C., Wong, P.W.H. (2011). Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics